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For observers moving with respect to the cosmic rest frame, the microwave background tem-
perature fluctuations will no longer be statistically isotropic. Aside from the familiar temperature
dipole, an observer’s velocity will also induce changes in the temperature angular correlation func-
tion and create non-zero off-diagonal correlations between multipole moments. We show that both
of these effects should be detectable in future full-sky maps from the Planck satellite, and can
constrain modifications of the standard cosmological model proposed to explain anomalous current
observations.

PACS numbers: 98.70.Vc, 98.80.Es, 98.80.Jk

The most prominent feature in the microwave background radiation is the large dipole modulation, at a part in
a thousand of the mean background temperature [1, 2]. This is generally attributed to our local peculiar velocity
with respect to the cosmic rest frame of 370 km/s [3–5]. However, changing frames from the cosmic rest frame to a
boosted frame also induces small, distinctive changes in both the cross-power spectrum and the correlation function
of the microwave radiation, both of which are potentially detectable in full sky maps with the angular resolution
of the Planck satellite. Here we present a straightforward calculation of the signals and discuss their detectability,
and note that subtle microwave background distortions are a promising route for constraining “tilted” cosmological
models where an isocurvature perturbation on the scale of the horizon contributes to the microwave dipole and to
large-scale streaming motions of galaxies and galaxy clusters. The signals are also degenerate to the dipole distortion
induced by gravitational lensing, so these signals can constrain models with suppressed fluctuations on large scales,
proposed to explain the low value of the microwave background correlation function at large angles.

Similar calculations were pioneered by Challinor and van Leeuwen [6], but they were primarily concerned with
demonstrating that the effects were small enough to be neglected when constraining cosmological parameters with
the microwave background power spectrum; they did not consider the correlation function, and did not consider
detectability of the signals or the resulting constraints. Burles and Rappaport [7] considered detectability of the
aberration in the microwave radiation via the shift in angular scale of acoustic peaks it introduces; this effect is
related to the correlation function analysis we present here. In a related paper, Menzies and Mathews [8] showed how
to de-aberrate the microwave sky, with an eye towards full-sky analysis such as cosmic topology searches. Amendola
and collaborators [9] have recently published similar calculations after a draft of this work appeared, and Pereira et
al. [10] have argued that motion-induced effects can be important when estimating the power spectrum from data
covering less than the full sky. Doppler shifts and dipole aberration due to local motion have also been probed at
other wavelengths (e.g., infrared [11], optical [12, 13], X-ray [14, 15], radio [16, 17], and gamma ray [18]), but selection
effects make precise measurements difficult.

Lorentz Transformation of the Temperature Field. Consider a frame S′ which is the rest frame of the microwave
background, so that T ′(n′) is the temperature distribution in this frame. Now take frame S to be our observation
frame which is boosted from the cosmic rest frame by a velocity v, with resulting sky temperature T (n) (we use
velocity units with c = 1). Theories of cosmology predict a sky map in the cosmic rest frame, while we observe a sky
map in our boosted frame.

For a photon with wavevector k
′ = k′

n
′ in the rest frame and wavevector k = kn in the observation frame, we have

the usual wavenumber transformation k = (1 + v · n′)(1 − v2)−1/2k′ ≡ Dk′ and the aberration equation

v̂ · n =
v̂ · n′ + v

1 + v · n′
(1)

with v̂ a unit vector in the boost velocity direction. A clear discussion of how a radiation field then transforms under
Lorentz boosts has been given by Ref. [19], which clarifies some misconceptions in earlier literature. The simple
result is T (n) = DT ′(n′), which gives the transformation between the microwave background rest-frame temperature
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distribution T ′(n′) and the observation-frame temperature distribution T (n). The factor of D gives the usual dipole
distortion, while the change in direction is the result of aberration.

Transformation of the Power Spectrum. Starting from this transformation of the temperature field on the sky,
we now derive the transformation of observables which are commonly extracted from cosmological models, namely
correlations of multipole moments and the angular correlation function. The (rest-frame) microwave sky temperature
is commonly expressed in terms of spherical harmonics,

T ′(n′) =
∑

lm

a′

lmYlm(n′), (2)

where the angular power spectrum in terms of these coefficients is C′

l = 〈a′ ∗

lma′

lm〉. Here the angle brackets refer to
an ensemble average over realizations of a random temperature field on the sky with the same underlying statistical
properties. If the rest frame universe is statistically isotropic, then each moment C′

l of the angular power spectrum
is independent of m, and the average value of coefficients with different indices vanishes: 〈a′ ∗

l′m′a′

lm〉 = 0 if l 6= l′ or
m 6= m′. We want the transformation law connecting the coefficients in the two frames.

The individual alm values transform as follows:

alm =

∫

dnT (n)Y ∗

lm(n) =

∫

dn
1 + v · n′

√
1 − v2

T ′(n′)Y ∗

lm(n). (3)

Now we choose a spherical coordinate system with the z-axis aligned with the boost direction, and change integration
variables to the rest-frame angles with n

′ = (θ′, φ),

alm =

∫ π

0

sin θ′dθ′
∫ 2π

0

dφ

√
1 − v2

1 + v cos θ′
T ′(θ′, φ)Y ∗

lm

(

cos θ′ + v

1 + v cos θ′
, φ

)

. (4)

Then expanding the rest-frame temperature distribution in spherical harmonics and doing the trivial integral over φ
gives the exact expression

alm =

∞
∑

l′=0

a′

l′mIm
l′l(v) (5)

(no sum over m) where we have defined

Im
l′l(v) ≡ 2π

√

1 − v2

∫ 1

−1

dx

1 + vx
P̃m

l′ (x)P̃m
l

(

x + v

1 + vx

)

(6)

with the abbreviation

P̃m
l (x) =

(

2l + 1

4π

(l − m)!

(l + m)!

)1/2

Pm
l (x) (7)

for the spherical-harmonic-normalized associated Legendre functions.
Some care must be taken in the numerical evaluation of Eq. (6), since the integrand is rapidly oscillating for large

values of l−|m| and standard numerical integrators have difficulty converging (but see [20] for a recursive technique).
Direct numerical integration reveals the orthonormality relation

∑

l′

Im
l′l1I

m
l′l2 = δl1l2 (8)

(no sum on m) which is valid for any velocity v.
From Eq. (5), we have the boosted-frame products of coefficients

〈

a∗

l1m1
al2m2

〉

= δm1m2

∑

l′

C′

l′I
m1

l′l1
Im2

l′l2
. (9)

Note that the statistical ensemble averaging procedure on the left side of this expression is independent of frame. The
fact that Eq. (9) has nonzero values for l1 6= l2 is a direct reflection of the breaking of statistical isotropy due to the
preferred direction of our local motion.
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Using the rest-frame power spectrum C′

l given by the WMAP+ACT best-fit cosmology [21], direct numerical
evaluation of Eq. (9) with v = 0.00123 gives that C1 ≈ 5000C′

1 for the observed dipole, and the fractional corrections
(C′

2 − C2)/C2 ≈ 6 × 10−3 for the quadrupole and (C′

l − Cl)/Cl ranging between 10−6 and 5 × 10−5 for various l
between 3 and 1500. These corrections to the power spectrum are too small to be observed, given the cosmic variance.
Correlations with |l2− l1| ≥ 2 are at most O(v2) or smaller and also undetectably small as verified by direct numerical
calculation.

However, for the case l2 = l1 + 1, a linear asymptotic expansion in v for Im
ll′ is sufficient for a consistent evaluation

for l1 − |m1| . 1/v, yielding

〈

a∗

l+1,malm

〉

∼ (C′

l+1 − C′

l)v(l + 1)Alm + O(v2) (10)

with the abbreviation Alm ≡ [(l + m + 1)(l − m + 1)/((2l + 1)(2l + 3))]1/2. Since roughly C′

l ≈ l−2C′

2 for l up to
roughly 1000 (neglecting acoustic oscillations), C′

l+1 −C′

l ≈ −2C′

l/l and 〈a∗

l+1,malm〉 ≈ −vC′

l for large l and small m.
This signal can be detected statistically, as shown below.

Transformation of the Correlation Function. The change in the two-point correlation function is also interesting,
since distortions in the shapes of microwave hot and cold spots due to the boost is an effect in angle θ space and not
in multipole l space. For two sky directions n1 and n2, the two-point correlation function is defined as

C(n1,n2) ≡ 〈T (n1)T (n2)〉 . (11)

In the rest frame, which we assume to be statistically isotropic, the correlation function C′(n′

1,n
′

2) depends only on
the angle between the two observation directions n

′

1 · n′

2. Substituting the temperature transformation directly into
Eq. (11) yields the exact result

C(n1,n2) =
1 + v · n′

1 + v · n′

2 + (v · n′

1)(v · n′

2)

1 − v2
C′(n′

1 · n′

2). (12)

As statistical isotropy is broken by the Lorentz boost, the correlation function now depends on the two directions
separately. The rest-frame correlation function is modified at O(v) and varies with the angle between the boost
direction and the observation direction. To linear order in v, we have C(n1,n2) ≃ (1 + v · n′

1 + v · n′

2)C
′(n′

1 · n′

2).
Detectability. The off-diagonal correlation Eq. (10) can be detected over cosmic variance noise with high-resolution

full-sky maps. For a full-sky microwave temperature map with Npix pixels, each with Gaussian noise σpix, and
a Gaussian beam of width σb, the measured amplitude of each alm is approximately normally distributed with a
variance σl ≡ Cl exp(−l2σ2

b ) + w−1 [22] and uncorrelated with other alm values, where w−1 ≡ 4πσ2
pix/Npix is the

inverse statistical weight per unit solid angle. A measurement of the multipoles alm up to a maximum multipole
moment l = lmax provides l2max − 4 estimates of the boost velocity, namely the quantities

vest
lm ≃

a∗

l+1,malm

(l + 1)Alm(C′

l − C′

l+1)
(13)

for 2 < l < lmax − 1 and −l ≤ m ≤ l. Each of these velocity estimates has a standard error of approximately
σlm ≃

√
2Clσl/((l + 1)Alm(Cl − Cl+1)) which uses the approximations C′

l ≃ Cl and Cl+1Cl ≃ C2
l . Then estimating

the velocity as a signal-to-noise weighted sum over l and m of the individual estimators vest
lm each with signal-to-noise

ratio of v/σlm gives a standard error on v from a full-sky map using multipoles 2 ≤ l < lmax of

σv ≃ πlmax

23/2

[

lmax−1
∑

l=2

(l + 1)3
√

(2l + 3)(2l + 1)

(

1 − Cl+1

Cl

) (

Cl

σl

)1/2
]−1

. (14)

where the sum over m of Alm has been approximated by an elementary integral.
The Planck satellite’s 143 GHz channel has approximately σb = 3.1 arcminutes, and Npix = 2.9× 106 with a target

noise level of σpix = 6.0 µK, giving w−1 = 1.6 × 10−4 µK2. The upper limit lmax is determined by the largest l
for which systematic errors in beam characterization do not dominate the error model for alm. For lmax = 2000,
Eq. (14) gives σv = 2.5 × 10−4. If the dipole is due entirely to our peculiar velocity, v = 0.00123 and Planck can
detect this signal through the off-diagonal cross-power signal at a signal-to-noise ratio of 5. For lmax = 2500, the
signal-to-noise ratio increases to 6. Other Planck channels will provide independent estimates and further increase the
signal-noise ratio, which will allow probing the l and m dependence of the signal: if more frequencies reduce the noise
per pixel by a factor of 2, the signal-to-noise ratio increases to 10. These estimates rely on the linear approximation
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Eq. (10), which is not necessarily accurate for some terms with large l and small m; more accurate calculations require
direct numerical calculation of all terms and efficient techniques for this will be presented elsewhere [23]. Foreground
emission and partial sky coverage may in practice reduce somewhat the significance of a detection, although neither
has greatly impacted measurements of the temperature power spectrum.

Detectability of the small corrections in Eq. (12) is harder to estimate, since values of the correlation function for
similar angles are highly correlated. At a separation θ, a map has approximately (2πθ/σb)Npix pairs; for the Planck
map above and, e.g., θ = 10◦, this is about 3.5 × 109 pairs. Averaging over all pairs of pixels, each with Gaussian
error σpix, and propagating through the statistical errors on each pixel gives the standard error on C(θ) as σθ =

σpix

√

2C(0)/Npairs. For a monopole and dipole-subtracted map, C(0) =
∑

l(2l + 1)Cl exp(−l2σ2
b )/(4π) = 1.1 × 104

µK2 for the Planck beam above, so σθ = 0.015 µK2, compared to a signal of C(θ = 10◦) & 1000 µK2 [24]. Testing the
form of Eq. (12) requires comparing different portions of the sky for a variation in the correlation function of a part
in a thousand. The correlation function can be estimated at many different angles, with each providing a moderate
signal-to-noise measurement of the difference in the correlation function between different sky regions. However, this
estimate includes only instrumental noise, and does not account for cosmic variance between regions; more precise
detectability estimates require evaluation of both the signal covariance for different angles and cosmic variance for
different regions (e.g., [25]). Correlations from foreground emission are an additional challenge for this measurement.

Cosmological Implications. While calculations in this paper have been motivated by the effect of our local motion
on the cosmic microwave background, an identical effect is induced by gravitational lensing. Microwave background
photons are deflected by a few arcminutes on average due to large-scale mass fluctuations; this signal has recently
been detected [26]. If the deflection field is decomposed into multipole moments, the dipole moment of the deflection
field has an identical functional form as the aberration from a boost, and with a similar amplitude in the standard
cosmological model, but with a random direction with respect to our local velocity [27]. In the present analysis we
have assumed we know the direction of the boost; to detect the lensing signal requires understanding how the signal
varies with assumed direction [9, 23]. To the extent that the direction can be measured, then the dipole lensing signal
can be extracted by comparing with the boost signal inferred from the temperature dipole. This would put interesting
constraints on modifications of the standard cosmology which suppress power on horizon scales [28, 29] in order to
explain the anomalously low correlation function of the microwave background at angles larger than 60 degrees [30].

Aside from being a consistency check on a fundamental cosmological property, the distinctive microwave background
signals from a local velocity with respect to the microwave background rest frame will constrain “tilted” cosmological
models where the dipole arises partly due to primordial superhorizon-scale isocurvature fluctuations [31–36]. Such
models might naturally explain surprising recent claims of a substantial galaxy cluster bulk flow on Hubble volume
scales [37] and galaxy bulk flow on somewhat smaller scales [38].
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Antony Lewis for directing our attention to the gravitational lensing signal discussed here. This work made use
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information. The authors are supported by NASA Astrophysics Theory Program grant NNXlOAC85G. TK is partly
supported by Georgian National Science Foundation grant GNSF ST08/4-422 and Swiss National Science Foundation
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