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ABSTRACT 6 

Axial rotational diffusion of rod-like polymers is important in processes like microtubule 7 

filament sliding and flagella beating. By imaging the motion of small kinks along the 8 

backbone of chains of DNA-linked colloids, we produce a direct and systematic 9 

measurement of axial rotational diffusivity of rods both in bulk solution and near a wall. 10 

The measured diffusivities decrease linearly with chain length, irrespective of distance 11 

from a wall, in agreement with slender-body hydrodynamics theory. Moreover, the 12 

presence of small kinks does not affect the chain’s axial diffusivity. Our system and 13 

measurements provide insights into fundamental axial diffusion processes of slender 14 

objects, which encompass a wide range of entities including biological filaments and 15 

linear polymer chains.  16 



BODY 17 

Unlike spheres, highly anisotropic objects diffuse in a complex manner, 18 

particularly so if they are flexible. The combined effects of shape anisotropy, internal 19 

degrees of freedom, and environment greatly influence their behavior.  Some of these 20 

dynamical effects are now being understood, like the strong coupling between 21 

translational diffusion and transverse rotation (usually simply termed rotation) [1] and 22 

enhanced transverse rotational diffusion of slightly flexible rods in crowded 23 

environments[2]. Despite its crucial importance in structuring of liquid crystals [3] and in 24 

biological processes such as lipid bilayer dynamics[4] and microtubule sliding[5, 6], 25 

rotational diffusion around the long axis (axial rotation) of rod-like molecules is still 26 

poorly characterized and not understood. Direct measurement of axial rotation is 27 

challenging because most of the electro-optical properties of cylindrical macromolecules 28 

are also axisymmetric[7]. NMR relaxation[4], fluorescence anisotropy decay[8], and 3D-29 

tracking of attached quantum dots [6, 9] have been used to measure the axial rotation of 30 

rod-like molecules. The first two techniques measure ensemble average properties and 31 

are model dependent; the third lacks sufficient accuracy to capture diffusion. 32 

 Rod-like colloidal model systems [8-10] can be visualized accurately in real time 33 

and space and have tunable length and stiffness.  Their axial symmetry can be broken 34 

simply, as shown by the recent observation of the axial rotation of a rod-like tetramer 35 

along its long axis[10]. Here, we report a systematic study of axial rotational diffusivity 36 

of slender rods by directly observing with high accuracy the dynamics of asymmetric 37 

DNA-linked magnetic colloidal particles.  38 

Axial rotational diffusion of elongated colloids was reported in 1827 by Robert 39 



Brown in the first report on thermal (now called Brownian) motion: “oval particles … 40 

their motion consisting in turning usually on their longer axis, and then often appearing to 41 

be flattened.” [11]. Brown’s observation relied on the slight asymmetry of arsenic 42 

trioxide flakes. The same symmetry breaking principle is used in our experiments, but the 43 

measurements are quantitative with high precision. The colloidal rods consist of DNA-44 

grafted paramagnetic particles aligned by a magnetic field and connected by linker DNA 45 

strands through hybridization[12, 13]. Their axial rotation is revealed by the relative 46 

motions of small kinks along their backbones, recorded by video microscopy and 47 

analyzed by image processing. The kinks act as tracers and are sufficiently large for 48 

accurate imaging while small enough not to introduce significant deviation from a 49 

perfectly straight rod in terms of axial rotational diffusivity. We first track the motion of 50 

kinks in 6 - 54µm stiff rigid rods undergoing Brownian motion near a flat substrate to 51 

measure their axial rotational diffusivities. Subsequently, we apply a magnetic field to 52 

control the distance between the rods and the substrate and measure their axial rotational 53 

diffusivities in bulk. These measured diffusivities match reasonably well with theoretical 54 

predictions [7, 14-16], confirming the validity of the slender-body hydrodynamic theory. 55 

These rigid rods are made by linking 15-base oligonucleotides-grafted[13, 17] 56 

(surface density 5 х 104 strand/µm2) paramagnetic polystyrene MyOne beads (Dynal 57 

Biotech, Oslo, Norway) under a uniform magnetic field[13]. Due to slight non-uniformity 58 

in the distribution of magnetic material inside the particles, their centers of mass deviate 59 

from the straight-line magnetic dipole alignment, forming kinks. These kinks are 60 

permanently set by hybridization of linker DNA and particle surface DNA. When the 61 

field is removed, the linked chains undergo quasi-2D Brownian motion near the substrate 62 



due to confinement by gravity (Figure 1a~h and Figure 2a). To quantify the stiffness of 63 

these chains with contour length L, their persistence length, Lp is measured to be 50 ± 7 64 

mm  (L/Lp ranging from 5×10-5 to 10-3) via Fourier mode analysis of their curvature 65 

induced by thermal fluctuations[13]. The Brownian motion of the isolated chains is 66 

recorded and the axial rotational angle,  ( )isΦ , is analyzed along the chain’s arclength, s, 67 

for each bond angle, i (see EPAPS for details). 68 

For each chain near the substrate (Figure 4 bottom-left inset), we measure the 69 

transverse rotational diffusivity and compare that with theory[1] to confirm that it is not 70 

attached to the substrate (Figure S1). To measure bulk axial rotational diffusivity, we use 71 

a magnetic gradient field to levitate the rod to ~10 µm above the substrate. The chain 72 

diffuses freely along the vertical axis, indicating that vertical forces are balanced (Figure 73 

4 top-right inset).  74 

The distribution of bond angles between each pair of bond vectors (bond number) 75 

can be measured (Figure 3a).  For example, the bond angle between the 1st and 2nd 76 

vectors (bond number 1) ranges from -5 to +5 degrees while the bond angles between the 77 

7th and 8th vectors (bond number 7) range from -15 to +15 degrees.  Since this range of 78 

angles is symmetric about 0 degrees, it indicates that the chain is making full axial 79 

rotations.  We can calculate ( )isΦ  from the kinks whose bond angle exceeds 14 degrees 80 

(chosen to minimize error while still providing a statistically sufficient number of kinks 81 

within a chain). For each kink, we compute ( )isΦ  based on the geometry[18] in Figure 82 

2b, where solid lines represent a 3D construct and dashed lines are 2D projections on the 83 

image plane. The final calculated ( )isΦ  spans between 0 and π (Figure 3b) and has a 84 

uniform distribution (Figure 3c). This indicates the rods undergo Brownian motion 85 



without any bias in the direction of axial rotation. Mean squared displacement (MSD) of 86 

( )isΦ  of each chosen kink within a rod is plotted against lag time tΔ  (Figure 3d), i.e., 87 

the time elapsed between two measurements. Finally, the axial rotational diffusivities arD  88 

are calculated by fitting a straight line to the MSD vs. lag time curve using the Einstein 89 

relation ( ) ( )( )2
2 ar

t
t t t D tΦ + Δ − Φ = Δ .  Measured diffusivities from different kinks 90 

within each rod are averaged to give the final values and standard deviations.  91 

The drag coefficient of a rigid rod rotating around its long axis predicted by 92 

slender-body hydrodynamic theory[5, 14, 19] is approximately the sum of rotational drag 93 

coefficients of spheres, 38 rπη , constituting the rod, i.e., 94 

24
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where Bk is Boltzmann constant, T  is absolute temperature, η  is the solvent viscosity, r  95 

is the bead radius, and L  is the rod length. 96 

To test the slender-body hydrodynamic theory, we measured the axial rotational 97 

diffusivities of rigid rods in bulk liquid. For each chain, a magnetic field is applied that 98 

has a gradient in the vertical direction but is uniform in the horizontal plane. The 99 

magnetic field in the horizontal plane induces dipole interactions that keep the chain from 100 

rotating in the image plane[17, 19], but does not affect the force balance in the image 101 

plane; therefore, the axial rotational diffusion of the chain should not be affected. The 102 

measured bulk axial rotational diffusivities of the 6 rigid chains (green circles in Figure 4) 103 

decrease with increasing chain length in agreement with slender-body hydrodynamic 104 

theory (red line in Figure 4).  105 

 Near a wall, diffusion is slower due to the hydrodynamic reflections of the rod on 106 



the wall, according to [15, 20] 107 

where h  is the distance between the center of the rod (beads) and the wall. We measure 108 

the axial rotational diffusivities of rigid rods near a wall by monitoring their Brownian 109 

motion near the glass substrate. Due to the high density of the paramagnetic beads 110 

(~1800 kg/m3), chains longer than 6 beads are confined in quasi-2D[13] and rarely 111 

fluctuate out of the focal plane (~300 nm). The data (blue circles in Figure 4) fit 112 

reasonably well Equation 2 with a power law of -1 (black line in Figure 4) in a log-log 113 

plot. The right-hand side of Equation 2 contains the same bulk diffusivity term as in 114 

Equation 1 and a factor determined by the height of the rod above the substrate. Because 115 

no systematic deviation of data points from Equation 2 is observed when using a single 116 

fitting parameter, h  ( 0.12h r mμ= + ), all the chains, long and short, have approximately 117 

the same average height above the substrate. The value of the height is in agreement with 118 

both the height of the same chains calculated using their short-axis rotational dynamics 119 

data[18] ( 0.13h r mμ= + , Figure S1, see Supplementary Material) and the height of more 120 

flexible chains calculated from their bending relaxation dynamics ( 0.15h r mμ= + )[13]. 121 

The above evidence strongly suggests the validity of previous hydrodynamic dissipation 122 

model. 123 

To claim high precision in our axial rotational diffusivity measurement, we 124 

quantify all the major sources of error. Error (1) comes from the inaccuracy in 125 

determining the particles’ centers of mass positions. A ±4 nm position error[17] would 126 

lead to 1° ~ 4°  error in the ( )isΦ  measurement, depending on the instantaneous position 127 

( )2
2 1

4
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ar
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of the kink. This random error source ultimately leads to a systematic underestimate of 128 

diffusivity by up to 3%.  Error (2) comes from the fact that kinks are ubiquitous in any 129 

rod we measure. Depending on the size of each kink, its effect on the deviation of the 130 

axial rotational drag coefficient of the whole chain is given by the expression 131 

26error rzζ πη= [21], where z is the particle center of mass deviation from the long axis. 132 

We use the theory for straight rigid rods that does not take into account the kinks with 133 

size 2 ( ) 20o o
isφ≤ ≤ , which is equivalent to an overestimate of diffusivity by 2%. Error 134 

(3) results from the fact that the ( )isφ  angles should vary between -∞ and +∞ but are 135 

only measured to be between -π/2 and π/2. This effect is equivalent to confined 1D 136 

diffusion between 2 walls[22] and would saturate the MSD vs. time curves (Figure 3d) as 137 

time approaches the axial rotational relaxation time. This effect could potentially result in 138 

an underestimate of diffusivity by ( )22O t π τ . We reduce this underestimation to less 139 

than 1% by limiting the time scale plotted to be less than 5% of the relaxation time scale. 140 

As seen in Figure 3d, the MSD vs. time curves are straight within 0~5s timeframe 141 

(relaxation time 200~1000s). Error (4) is due to the assumption that both centers of mass 142 

of the particles (left and right in Figure 2b) next to the kinked particle (top one in Figure 143 

2b) are on the rotation axis, which might not be true due to the fact that the kink 144 

arrangement within a rod is random and 3D in nature. Error (5) is caused by occasional 145 

tilting of the rods during recording that results in inaccurate particle distance 146 

measurement. Errors (4) and (5) are negligible (causing the error in the final measured 147 

diffusivity values to be <1%) since the tilting angle and the degree of axial mismatch are 148 

small enough[17, 23]. In summary, the upper bound of error is ±3%, which is 149 

unprecedented in single rod axial rotational diffusivity measurements. 150 



In this letter we have demonstrated a convenient and systematic approach to 151 

measure axial rotational diffusivities of colloidal rigid rods of length 6~54µm, both in 152 

bulk and near a wall. We have shown that the experimentally measured diffusivities 153 

match reasonably well with slender-body hydrodynamics theory calculations. Our DNA-154 

linked colloidal rods, with controllable length, rigidity and elevation, in conjunction with 155 

the imaging and processing technique, provide an excellent prototype to study 156 

semiflexible filament axial rotation, twisting and writhing dynamics. This opens the door 157 

to investigating polymer dynamics using colloidal rods both in bulk and confined 158 

environments. 159 
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 201 

Figure 1. Snapshots of a 12-bead rigid DNA-linked chain under Brownian motion in 202 

aqueous solution near the bottom substrate. The snapshots a~h are taken 10 seconds apart 203 

and the red dashed circles are highlighting the kink formed by the 7th, 8th and 9th bead 204 

from the left. The unusual large size ( 75oφ ≈ ) of this kink is only for demonstration 205 

whereas the kinks used to measure the axial rotational diffusivities in this letter are much 206 

smaller than this (14 25o oφ≤ ≤ ). 207 
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 208 

Figure 2. Measuring axial rotation of a 15-bead DNA-linked chain by tracking motions 209 

of kinks. a) Snapshot of a 15-bead DNA-linked chain undergoing Brownian motion. b) 210 

Geometry of a kink in 3D configuration and its projection. c) Definitions of position 211 

coordinates, bond angle ( )isφ  and tangent angle ( ) ( )i is sθ π φ= −  along the chain.  212 
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 213 

Figure 3. a) Overlay of bond angles φ  of all kinks in a 10-bead chain within 800 seconds. 214 

b) Axial rotational angle ( )tΦ  measured from the sixth kink of the same chain in a). c) 215 

Histogram of the same angles in plot b). d) Typical plot of axial rotational angular mean-216 

squared displacement (MSD) as a function lag time of 10-bead (black circle), 16-bead 217 

(blue circles), 30-bead (red circles) and 40-bead (green circles) chains in bulk.  218 
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 219 

Figure 4. Axial rotational diffusivities of rigid rods. Slender-body hydrodynamics theory 220 

predictions of axial rotational diffusivitis in bulk (red line) and near a wall (black line) as 221 

a function of rod lengths. Experimental measured axial rotational diffusivities of rods  in 222 

bulk (green circles) and near a wall (blue circles). Error bars are standard deviations of 223 

axial rotational diffusivities obtained from different kinks of the same chains. (Insets) 224 

Schematic illustrations of a chain near a wall (bottom left, where h  is the distance 225 

between the center of the beads and the wall) and a chain elevated by a magnetic field 226 

(top right). Distances are not to scale.  227 


