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We present the first numerical computation of the neutral fermion gap, ∆F , in the ν = 5/2 quantum Hall

state, which is analogous to the energy gap for a Bogoliubov-de Gennes quasiparticle in a superconductor. We

find ∆F ≈ 0.027 e2

εℓ0
, comparable to the charge gap. We also deduce an effective Fermi velocity vF for neutral

fermions from the low-energy spectra for odd numbers of electrons, and thereby obtain a correlation length

ξF = vF /∆F ≈ 1.3 ℓ0. We comment on the implications of our results for experiments, topological quantum

information processing, and electronic mechanisms of superconductivity.

PACS numbers: 73.43.-f, 71.10.Pm, 05.30.Pr, 03.65.Vf

The ν = 5/2 fractional quantum Hall state [1–3] has been

the subject of intense experimental and theoretical investi-

gation in recent years because it may support non-Abelian

anyons and may serve as a platform for topological quan-

tum information processing [4–6]. Theoretical [7–13] and ex-

perimental [14–17] evidence has been rapidly accumulating

which is consistent with ν = 5/2 being an Ising-type non-

Abelian state, in the universality class of either the Moore-

Read (MR) Pfaffian state [18, 19] or the anti-Pfaffian (Pf)

state [20, 21]. However, there are also some experiments [22–

24] which are difficult, though not impossible, to interpret in

a manner consistent with the simplest incarnations of either of

these states. In addition, some theoretical studies [10, 25–28]

highlight the sensitivity of numerical results to system size

and the precise form of the Hamiltonian.

If the ν = 5/2 fractional quantum Hall state is proven ex-

perimentally to be non-Abelian, then its potential use for topo-

logical quantum information processing is dependent on the

size of the energy gaps ∆a to different species of quasiparti-

cles a. If the temperature T can be kept much less than these

gaps ∆a and inter-quasiparticle distances x kept much greater

than the tunneling correlation lengths ξa, then the correspond-

ing error rates will vanish as e−∆a/T and e−x/ξa and, hence,

be negligible.

The smallest gap for charged quasiparticles is usually as-

sumed to correspond to the minimally charged excitations of

a state [46]. For the MR and Pf states, the minimal charge

±e/4 quasiparticles also carry non-Abelian Ising topologi-

cal charge σ. It is natural to interpret the gap corresponding

to the temperature dependence of the longitudinal resistance,

ρxx ∼ e−∆trans/2T , as the energy gap ∆c ≡ ∆e/4+∆−e/4 for

a charge ±e/4 quasihole-quasiparticle pair, which is thereby

deduced from experiments to be ∆c ≡ ∆trans ≈ 0.5K in

the highest-mobility samples [29]. Numerical studies of small

numbers of electrons interacting through Coulomb interac-

tions at ν = 5/2 with Landau level mixing, finite thickness,

and disorder neglected find ∆c ≈ 0.025− 0.029 e2

εℓ0
(which is

3.2 − 3.7 K at 6.5T) [9, 30].

However, bulk electrical transport is not sensitive to the en-

ergy gap of electrically neutral excitations, such as the neutral

fermion that carries Ising topological charge ψ in the MR and

Pf states. Consequently, the neutral fermion gap, ∆F , has not

been measured (though it could, in principle, be determined

from thermal transport measurements or, as we discuss below,

from interferometry measurements). ∆F has previously not

been theoretically calculated, either.

The MR and Pf states are the quantum Hall analogues of

spin-polarized px + ipy superconductors [18, 19, 31]. Charge

e/4 quasiparticlesσ correspond to flux hc/2e vortices; neutral

fermions ψ correspond to Bogoliubov-de Gennes quasiparti-

cles in the superconductor. In most superconductors, these

two gaps have completely different scales and are not consid-

ered on the same footing. However, in the ν = 5/2 state, there

is only a single energy scale e2/εℓ0, so these gaps can be com-

parable. Thus far, however, only ∆c has been computed. In

this paper, we compute ∆F . This is the appropriate quantity

to use when comparing the gap in the ν = 5/2 state to the

gaps in other superconductors, and when drawing lessons for

non-phonon mechanisms of superconductivity from this state.

The neutral fermion gap is also a relevant quantity in de-

termining the effectiveness of topological protection in Ising-

type quantum Hall states, should they exist in nature. The

transfer of Ising ψ charge between quasiparticles, e.g. through

tunneling, alters the non-local state shared by the quasiparti-

cles. It is, thus, responsible for splitting the degenerate non-

local states and causing errors in the encoded information

[32]. Similarly, the neutral fermion gap directly determines

the visibility of non-Abelian statistical signatures in interfer-

ence experiments (see [33–35], and references therein), since

tunneling of the neutral ψ charge (between bulk quasiparticles

and between bulk quasiparticles and the edge) suppresses in-

terference terms. In this light, it is of paramount importance

to study this quantity. In this letter, we produce numerical es-

timates of the neutral fermion gap and correlation length for

the ν = 5/2 quantum Hall state.

In order to model the ν = 5/2 state, we assume that both

spins of the lowest Landau level are filled and inert and focus

on the second Landau level, which has ν = 1/2. We per-

form numerical calculations with Ne electrons on the sphere

at the flux values Nφ = 2Ne − 3 at which the MR ground-
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state would occur for Ne even. We study small systems

(Ne ≤ 15 electrons) by exact diagonalization and larger sys-

tems (13 ≤ Ne ≤ 26 electrons) by the density-matrix renor-

malization group (DMRG), as in [9, 13, 36]. We work in the

simplified situation of electrons interacting through Coulomb

interactions, neglecting finite layer-thickness [10], Landau-

level mixing [11, 12, 27], and disorder. These certainly play

a role in real devices, and a more realistic calculation, includ-

ing these effects, will be discussed elsewhere [41]. For the re-

mainder of this paper, however, we will use the term “ν = 5/2
state” to refer to this idealized model.

In order to compute the energy gap for an electrically-

neutral quasiparticle, we need to compare the usual ground-

state to a configuration that forces the system to have a neu-

tral excitation of non-trivial topological charge. By increas-

ing the electron number by 1 and the flux by 2, we maintain

charge neutrality. However, an electron together with two flux

quanta is a fermion (i.e. a “composite fermion”). Thus, an

incompressible state at ν = n + 1/2 will generically have a

neutral fermionic excitation, and its energy can be computed

by comparing the lowest energy of a state with electron num-

berNe and fluxNφ, which we will denote byE (Nφ, Ne) and

the lowest energyE (Nφ + 2, Ne + 1) of a state with electron

numberNe+1 and fluxNφ+2. Since a state with an odd num-

berNe of electrons should be understood as a state with a neu-

tral fermionic excitation, we will reserve the term ground state

for the lowest energy state for Ne even and Nφ = 2Ne − 3
and use “lowest energy state” for generic values of Ne, Nφ.

In order to isolate the energy of a neutral fermion we must

subtract off the Ne dependence of the ground state energy:

∆F (Ne) ≡
(−1)

Ne

2
[E (Nφ + 2, Ne + 1)

+E (Nφ − 2, Ne − 1) − 2E (Nφ, Ne)] (1)

In the regime in which E (Nφ, Ne) scales lin-

early with Ne, the neutral fermion gap ∆F (Ne)
will be constant. It is instructive to contrast Eq. 1

with the expression for the charge gap, ∆c (Ne) =
1
2

[E (Nφ + 1, Ne) + E (Nφ − 1, Ne) − 2E (Nφ, Ne)].
In Eq. 1, we compare the energies of systems with the same

charge-flux relation so that the net charge of all excitations

is zero while ∆c compares the energies of states with fluxes

offset by one so that the net charge of all excitations is νe.
One should also not confuse the neutral fermion gap ∆F with

the “neutral gap,” which is the energy gap above the ground

state at a fixed Nφ.

For pure Coulomb interactions in the second Landau level,

we have computed the ground state energies for even numbers

of electrons up to Ne = 26 and the lowest state energies for

odd numbers of electrons up to Ne = 17. In a recent cal-

culation, Lu et al. [37] have computed these energies up to

Ne = 18 electrons by exact diagonalization; our energies are

in agreement with theirs. In Fig. 1, we show the values of

the neutral fermion gap ∆F (Ne), computed using Eq. 1, as

a function of inverse system size 1/Ne for up to Ne = 17
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FIG. 1: The neutral fermion gap, as defined in Eq. (1), for the ν =
5/2 quantum Hall state as a function of inverse system size 1/Ne.

electrons. As may be seen from Fig. 1, the neutral fermion

gap fluctuates considerably, which is a sign of finite-size ef-

fects. If we were to use a purely linear fit, then we would find

∆F ≡ limNe→∞ ∆F (Ne) ≈ 0.028; if we were to fit the gap

to a constant, we would find ∆F ≈ 0.023. However, the er-

rors in these fits, determined from the maximum fluctuation

away from the average, are large (though ∆F is clearly non-

zero). Therefore, more care is needed in order to perform an

Ne → ∞ extrapolation.

To this end, we note that if the system is gapped, then we

can write E (Nφ, Ne) in the form

E (Nφ, Ne) = ENe + Eeven, odd +O(e−a
√
Ne) (2)

for Ne even or odd, respectively. The leading terms are the

same for even and odd Ne because the energy per particle E
must be the same in the thermodynamic limit. The constant

terms Eeven,odd are due to the internal order of the phase and

the genus of the system [45], as well as the energy cost of the

(collectively) neutral quasiparticle(s) for Ne odd. Corrections

to these first two terms are exponentially small in the linear

size of the system (∼
√
Ne) since the system has a gap; here,

a is a constant inversely proportional to the correlation length.

Substituting Eq. 2 into Eq. 1, we find

∆F (Ne) = Eodd − Eeven +O(e−a
√
Ne) (3)

and thus ∆F = Eodd − Eeven, further justifying our definition

of the neutral fermion gap. We can, however, use Eq. 2 to ex-

tractEodd−Eeven more directly by simply fitting the numerical

data with functions of this form, and it allows us to exploit the

larger system sizes for which we have computed the ground

state energies for evenNe. In Fig. 2, we plot E (Nφ, Ne) /Ne
vs. 1/Ne, and fitting to Eq. 2 (divided by Ne) but replac-

ing, for simplicity, the O(e−a
√
Ne) term by a single term

ce−a
√
Ne , we find E = −0.3634, Eeven = −0.5381, and

Eodd = −0.5114. For Ne even, we find c = −0.7876 and

a = 0.6675, while for Ne odd we find c = −1.4700 and

a = 0.8287. Thus, we can reliably extract the thermodynamic

limit of the neutral fermion gap by taking the difference be-

tween the 1/Ne terms in the expressions forE (Nφ, Ne) /Ne.
We find Eodd − Eeven ≈ 0.027 (in units of e2/εℓ0).

One advantage of using this method of extracting the neu-

tral fermion gap is that it is easier to diagnose potential dif-

ficulties with the Ne → ∞ extrapolation. For instance,
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FIG. 2: The Ne → ∞ extrapolation of E (Nφ, Ne) /Ne correspond-

ing to the ν = 5/2 state for Ne even (squares) and Ne odd (dots)

using Eq. 2, from which we find ∆F ≈ 0.027.

one potential pitfall is aliasing. If one of the systems stud-

ied is actually in the ground state of a different phase, then

E (Nφ, Ne) /Ne would not sit on the expected (nearly-linear)

curve. As may be seen from the figure, the data points deviate

negligibly from the fitting curves, so this is not the case for the

system sizes we study. At any rate, the most serious potential

aliases occur at Ne < 10, which we do not consider for the

extrapolation in Fig. 2

The preceding considerations are completely general. We

now momentarily interpret our results in terms of a putative

Ising-type system at this filling fraction, where the lowest en-

ergy state on the sphere withNe odd electrons must have non-

trivial quasiparticles whose total topological charge is ψ [45].

The two simplest possibilities are that such a state either has a

neutral ψ quasiparticle, or a charge e/4 σ quasihole and −e/4
σ quasiparticle pair that fuses into a ψ. Note that possible

mismatches between allowed topological charges and stable

quasiparticle species are a feature of all topological states. For

instance, in the ν = 1/3 Laughlin state [38], the charge 2e/3
quasihole carries an allowed value of topological charge, but

it is not an energetically stable excitation (for Coulomb inter-

actions); if we attempt to create one, it will decay into two

charge e/3 quasiholes. Similarly, we must consider the pos-

sibility that a neutral ψ quasiparticle will simply decay into

a charge ±e/4 σ quasihole-quasiparticle pair that fuses into

the ψ channel. In this case, ∆F = Eodd − Eeven would be

identified with ∆c and would provide a lower bound for ∆ψ .

However, since we find ∆F ≈ 0.027 and previous studies [13]

obtained ∆c ≈ 0.029, we tentatively conclude that the neutral

fermion is stable (at least against this decay channel) and has

∆F = Eodd − Eeven ≈ 0.027. (4)

Stronger evidence supporting this interpretation comes from

the good fit of our data to the Ne odd case of Eq. 2. If the

neutral fermion were unstable, there would be a −1/32
√
Ne

term in the odd electron number energy, resulting from the

Coulomb interaction energy between the ±e/4 charges [30].

For purposes of comparison, we note that a similar com-

putation of the neutral fermion gap for the ν = 1/3 Laugh-

lin state [38] would give the value zero because the even-

and odd-electron number ground state energies lie on the

same line [13]; since it is not a paired state, there is no

qualitative difference between even and odd electron num-

bers. On the other hand, the Pf state, the (3, 3, 1) state [39]

and the Bonderson-Slingerland (BS) states [40] have neutral

fermionic excitations whose gaps can be computed by the

method explained in this paper. In the absence of Landau-

level mixing, ∆F is expected to be precisely the same for the

Pf state as it is for the MR state; preliminary calculations are

consistent with this, as we report elsewhere [41]. In the case

of the k ≥ 3 Read-Rezayi states [42], there are neutral excita-

tions that are non-Abelian and, therefore, cannot be obtained

by simply altering the electron number and flux.

Although the neutral fermion gap has not been previously

calculated, a related quantity has recently been calculated,

namely the splitting between the two degenerate states that

occur for four e/4 σ quasiparticles [43]. This splitting,

∆E(r), decays with distance r between the σ quasiparticles

as ∆E(r) ∼ f(r) e−r/ξ for large r. Here, f(r) is an oscil-

latory function and ξ is the characteristic length scale for the

decay. If we interpret this splitting as the energy associated

with inter-quasiparticle tunneling of neutral fermions, then we

expect ξ = ξF = v/∆F , where v is the velocity of a neutral

fermion. If the ν = 5/2 state is interpreted as a paired state

with small gap, then v would be the Fermi velocity vF of the

underlying Fermi-liquid-like metallic state. In such a case, the

Fermi velocity could be deduced by studying the spectrum of

a single neutral fermion as follows. For odd Ne, the energy

spectrum will not have a gap above the lowest energy state

(in the thermodynamic limit) since there will be one unpaired

neutral fermion above the Fermi energy, and this fermion can

be excited to any other state above the Fermi energy. In a

BCS mean-field theory, the energy spectrum for odd Ne will

be bounded below by the curve EL =
√

ǫ2L + ∆2
F + Egs ≈

1
2∆F

ǫ2L+∆F +Egs, where Egs is the ground state energy for

Ne − 1 electrons, ǫL is a single-particle energy relative to the

Fermi energy for a state with angular momentum L. We take

ǫL = vF

Nφℓ0
[L(L+ 1) − L0(L0 + 1)], where L0 is the highest

occupied angular momentum orbital. Thus, for L ≈ L0, the

excitation energies are expected to be quadratic in L− L0:

EL ≈ 1

2∆F

(

vF (2L0 + 1)

Nφℓ0

)2

(L− L0)
2 + const. (5)

As may be seen in Fig. 3, the lowest excitation energies for

Ne = 9, 11, 13, 15 appear to follow a parabola. A linear

extrapolation of the vF values obtained from these spectra

according to Eq. 5 gives vF ≈ 0.021 e2/ε, which leads to

ξF ≈ 0.8 ℓ0. However, the parabolic fit is quite poor for

N = 13; the other three system sizes are consistent with

vF ≈ 0.035 e2/ε, or ξF ≈ 1.3 ℓ0. We note, for compari-

son, that Baraban et al. [43] find a length scale ξ ≈ 2.3ℓ0,

although their calculation is for much larger system sizes and

for trial wavefunctions, rather than the Coulomb ground state.

Our results imply that a quantum computer based on a pos-

sible Ising-type state at ν = 5/2 should be operated at temper-

atures much lower than ∆F , which is ≈ 3.4K for a magnetic
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FIG. 3: The low-energy spectrum of the ν = 5/2 state for

9, 11, 13, 15 electrons with parabolic fits of the lowest-lying states

to Eq. 5, from which we extract the effective velocities plotted in the

lower panel.

field B = 6.5T. This implies that, at 35mK, the error rate due

to thermally-excited neutral fermions is ∼ e−∆F /T ≈ 10−44

if the computational anyons are further than ξF ≈ 130Å from

each other and the edge. However, there may be other po-

tential sources of error. Furthermore, as a result of disor-

der, the neutral fermion gap may locally be smaller than ∆F ,

thus increasing the error rate. In the experiments of Willett et

al. [16], the inter-quasiparticle distances are probably com-

parable to ξF ; this implies that the error rate may be large

and there is probably significant splitting between the 2n−1

states expected for 2n quasiparticles [44]. By measuring the

time over which the signal through an interferometer remains

stable, it should be possible to measure the error rate and,

thereby, ∆F . In addition, bulk thermal transport may be domi-

nated by thermally-excited neutral fermions. Although charge

e/4 quasiparticles may have a smaller energy gap (approxi-

mately half that for a neutral fermion), they will be much more

strongly localized by disorder than neutral fermions.

Finally, we note that ∆F ≈ 0.027 e2

εℓ0
is small compared

to the Coulomb energy. Since one might argue that the gap

is small because of the proximity to competing phases, such

as the striped phase [8], we consider the neutral fermion gap

for a Hamiltonian in which the only interaction is the (re-

pulsive) three-body interaction for which the MR wavefunc-

tions are the exact ground states [8, 19]. For this Hamilto-

nian, the ground state energy is precisely zero for Ne even, so

Eeven = 0. Thus, we must only compute the lowest state en-

ergies for Ne odd. We note that these states occur at different

values of the angular momentum than for Coulomb interac-

tions, perhaps because the precise shape of the Fermi surface

(which may be quite irregular for some Ne for these system

sizes) is different for these two Hamiltonians – a non-universal

but quantitatively important effect. A simple linear extrapola-

tion of these energies gives ∆F = Eodd ≈ 0.45, if the coeffi-

cient of the three-body interaction is 1. Thus, there is nothing

wrong in principle with the naı̈ve idea that the superconduct-

ing gap can be comparable to the Coulomb energy scale for an

electronic pairing mechanism, so long as there are no nearby

competing phases to suppress it.
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