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Saturation of the intensity dependence of the refractive index is directly computed from ionization
rates via a Kramers-Kronig transform. The linear intensity dependence and its dispersion are found
in excellent agreement with complete quantum mechanical orbital computations. Higher-order terms
concur with solutions of the time-dependent Schrödinger equation. Expanding the formalism to all
orders up to the ionization potential of the atom, we derive a model for saturation of the Kerr effect.
This model widely confirms recently published and controversially discussed experimental data and
corroborates the importance of higher-order Kerr terms for filamentation.
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Most nonlinear optical effects can be understood in the
perturbative limit with two or three interacting op-

tical waves, giving rise to contributions χ
(2)
ij EiEj or

χ
(3)
ijkEiEjEk to the polarization P , respectively. Higher-

order χ(n)(n ≥ 4) terms can be formally considered. Yet,
a perturbative description of higher order effects is rarely
useful as often enough a large number of waves interact
simultaneously as, for example, in high-harmonic gen-
eration [1]. The role of χ(5) effects for arresting catas-
trophic optical self-focusing has been discussed already
more than 20 years ago [2–4]. χ(3) effects, namely the
all-optical Kerr effect, give rise to an increase of the re-
fractive index with intensity n = n0+n2I and a resulting
focusing nonlinear lens. A χ(5) dependence with nega-
tive sign and defocusing nonlinear lensing would explain
the phenomenon of filamentation, i.e., the formation of
long self-guided light strings with nearly constant diam-
eter. Early experimental results indicated that filamen-
tation cannot only be explained by plasma formation [5],
which gives rise to a negative index contribution suit-
ably described by Drude theory. Nevertheless, refined
theoretical models succeeded in explaining even complex
experimental results without the need for including a sat-
uration of the Kerr effect [6, 7]. Recently, this accepted
picture was challenged by measurements [8, 9] that indi-
cate yet again a strong influence of higher-order nonlin-
earities to the extent that filament formation is explained
in the complete absence of plasma formation. These re-
sults have been controversially discussed [10, 11]. In the
following, we provide an independent and previously un-
reported approach towards computing Kerr saturation.
Our approach is based on a Kramers-Kronig transform
[12] of optical absorption derived from Keldysh theory
[13]. This analysis supports the experimental results in
Ref. [8], indicating that we may have in fact a paradigm
shift in explaining femtosecond filamentation [10].

Our model is based on a recent modification [13] of
Perelomov-Popov-Terent’ev (PPT) theory [14], the for-
mer providing cross-sections for multiphoton ionization

according to
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for ω ≥ ωp/K. Here ω is the optical frequency, qe and me

denote electron charge and mass, respectively, ǫ0 is the
vacuum dielectric constant, and c denotes vacuum light
speed. ~ωp is the ionization potential of the gas species
under consideration. The constant K = 〈ωp/ω + 1〉
counts the number of photons required for ionization,
where 〈x〉 denotes the integer part of x. The effective
prinicipal quantum number of the bound state is given
by n∗ = Z

√

ωH/ωp, where ~ωH = 13.6 eV is the Ry-
dberg energy and Z is the charge number of the ionic
residuum. The constant C = 2n∗−1/Γ(n∗ + 1) is related
to the asymptotic expansion of the ground-state elec-
tronic wavefunction, and w0[x] denotes Dawson’s func-
tion [15]. From the cross-sections σK , the K-photon
absorption coefficients ∆αK may then be calculated ac-
cording to ∆αK(ω) = K~ωρntσKIK−1, with a particle
density ρnt = 2.7 × 1019cm−3 corresponding to stan-
dard conditions. For atomic argon, this perturbative
approximation is expected to hold for intensities up to
50TW/cm2. This intensity corresponds to a Keldysh-
parameter of γ = 1.62, where MPI is the dominant ion-
ization channel [16].

Kramers-Kronig theories have been successfully ap-
plied to nonlinear refraction in solids [12, 17]. Here
we combine this method with Keldysh theorey to com-
pute nonlinear refraction in inert gases. In principle,
as pointed out in [12], the use of Kramers-Kronig rela-
tions requires knowledge of nondegenerate multiphoton
absorption coefficients ∆αN

K(ω1, ..., ωK). These coeffi-
cients cannot easily be provided by PPT theory. Instead,
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we use

∆αN
K(ω1, ω2, ...., ωK) = ∆αK(

ω1 + ... + ωK

K
), (2)

as an estimate, generalizing the model successfully used
to compute n2 in solids [17].

Using this proven simplification, we find that the non-
linear refraction coefficients n2k are related to (k + 1)-
photon absorption coefficients σk+1 via the KK relations
according to

n2k(ω) =
~cρnt

π

∞
 

0

(Ω + kω)
σk+1

(

Ω+kω
k+1

)

Ω2 − ω2
dΩ, (3)

where
ffl

denotes Cauchy’s principal value integral. It
has been shown in Ref. [17] that Eq. (2) is a reasonable
approximation when AC Stark terms are neglected in
the model. As a benchmark for our model, we calculate
the leading term n2(ω) of nonlinear refraction for helium
[Fig. 1], setting k = 1.
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FIG. 1: (a) Nonlinear refractive index n2 of He below the
2PA resonance at λ = 85 nm. Solid lines: n2 dispersion as
extracted from Eq. (3). Dashed line: fit of theoretical data to
scaling law (dots) from [21]. (b) Same in the vicinity of the
resonance (solid line), dashed-dotted line showing n4(ω).
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FIG. 2: (a) Nonlinear refractive index n2 of Ar from Eq. (3)
below the 2PA resonance. Dash-dotted line: power series
in ω

2 [21, 22] fitted to theoretical data [22] (stars). Dashed
line: experimental n2 data [21] Dotted line: Lehmeier data
extrapolated with scaling law given in [19]. (b) n2 of neutral
argon in the vicinity of the 2PA resonance at λ = 85nm [solid
line, Eq. (3)]. Dashed line: n2 of singly ionized Ar+. Dashed-
dotted line: n4(ω) for Ar.

Among the inert gases, helium is the least complex
atom and the only one for which detailed computa-
tions of n2 from atomic wave functions exist. For large

wavelengths, our analysis indicates a value n2 = 4.8 ×
10−9 cm2/TW, which deviates by only 26% from the
value 3.8 × 10−9 cm2/TW that was derived in [18] using
explicitly electron-correlated wave functions. Keeping in
mind that the absorption spectra σK have been derived
from strong field ionization rates for which often an order
of magnitude agreement with experimental data is con-
sidered reasonable, our Kramers-Kronig approach pro-
vides an excellent prediction of n2. Our model also cor-
rectly reproduces the dispersive behavior of n2 predicted
in Ref. [18] and reasonably agrees with experimental data
at 1.06 µm wavelength [19]. Even better agreement is
obtained for argon [Fig. 2]. Going beyond the tabulated
values of [18] for helium, our computations predict that
n2 reaches a maximum value n2 ≈ 4 × 10−8 cm2/TW at
about 100nm wavelength, which corresponds to half the
ionization energy. Going to even smaller wavelengths, n2

crosses zero at 85 nm and stays negative up to the ion-
ization energy equivalent of 50.4 nm wavelength. This
prototypical behavior with a sign change at approxi-
mately 60% of the ionization threshold is seen for all
inert gases and duplicates the dispersion characteristics
of n2 in solids [17]. Compared to our previous work [20],
the possibility to extend n2 computation beyond half the
ionization energy into the negative region and the cor-
rect prediction of its dispersion in the positive region
both arise from usage of the improved ionization cross
sections provided in Ref. [13].

Similarly good agreement of Eq. (3) with independent
experimental and theoretical data is obtained for neon,
krypton and xenon, for which our approach reproduces
experimental and theoretical data [21, 22] within 15%
precision.

Figure 2 shows an n2 computation for argon showing
similar features as the helium example. Given that the
ionization energy of argon is only 15.76 eV and that a
smaller number of photons is required to reach the con-
tinuum, n2 of argon is about a factor of 20 larger in the
infrared, with a value of ≈ 10−7 cm2/TW. This value
agrees favorably with commonly used reference data [19]
and was also reproduced by Loriot et al. in their mea-
surements. Compared to helium, the zero crossing of n2

is now shifted to a wavelength of 140nm.

n2(10
−8cm2/TW) Z = 1 Z = 2 n2(ω → 0) Refs.[18, 21]

He 0.52 0.03 0.48 0.38

Ne 1.31 0.27 1.18 0.96

Ar 12.68 6.14 10.84 10.40

Kr 30.69 17.28 25.63 23.17

Xe 91.58 55.17 73.87 61.39

TABLE I: Nonlinear refractive index n2 at 800 nm for Ar and
Ar+ (Z = 1), (Z = 2) and Ar in the static limit n2(ω →
0). Experimental data (rightmost column) as compiled from
[18, 21] and corrected for the dispersion of the DFWM process
with Eq. (13) in [20].
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Nonlinear refraction, in principle, holds two potential
mechanisms for saturation. First, the generation of free
electrons will replace a number of neutral atoms by ions.
In the case of Ar+, this raises the ionization threshold
to 27.63 eV, which, in turn, has to reduce the resulting
n2 values as illustrated by the transition from argon to
helium. A computation of the resulting values for Ar+ is
shown as the dashed line in Fig. 2(b), which confirms a
reduction of n2 by a factor of ≈ 2. Table I lists computed
values of n2 of all noble gases and their first ionic species
(Z = 1, 2) for 800nm wavelength.

While this first mechanism suggests a depletion of the
neutral atoms as the cause for saturation, the same ef-
fect may also occur due to higher-order Kerr terms n2k

with k ≥ 2. These terms can also be computed using
our theoretical approach. As an example, we have plot-
ted n4(ω) of helium and argon as dashed-dotted lines
in Figs. 1(b) and 2(b), respectively. According to our
model, argon displays an infrared limit n4(ω → 0) =
2×10−12 cm4/TW2, reaches a 12 times higher maximum
value at 240 nm, and is negative below 210 nm. This be-
havior is again in agreement with the prototypical disper-
sion of the Kerr coefficients, yet caused by three-photon
rather than two-photon absorption.

There is an apparent contradiction to the negative
value n4 = −0.36 ± 1.03 × 10−9 cm4/TW2 reported in
Ref. [8]. In principle, a negative n4 value at 800 nm ap-
pears to be incompatible with the dispersion of the Kerr
terms predicted by our model.

The analysis of higher-order Kerr terms can easily be
continued to arbitrary order k in our model, even be-
yond the highest-order experimental n10 term in Ref. [8].
Again, helium provides a benchmark for this exten-
sion. Using the theoretical susceptiblity data published
in Ref. [23], we find excellent (within 10%) agreement
with n4 and n6 values derived from Kramers-Kronig the-
ory. The agreement only breaks down in the highest-
order coefficient n10 extracted from the series expansion
used in Ref. [23].

For argon at a wavelength of 800nm, we compute
positive coefficients up to n18. Higher-order coefficients
are negative and merge into a series with constant ra-
tio between successive coefficients [24]. This geomet-
ric series ensures convergence up to 70 TW/cm2. De-
spite the nonalternating structure of our sequence of
Kerr coefficients, we find a good agreement between the
computed nonlinearly induced index change ∆nKerr =
n2I + n4I

2 + n6I
3 + ... and the experimental values for

argon in [8], see Fig. 3(a). Our model predicts an in-
crease of ∆nKerr up to about 42TW/cm2 and inversion
of the index change at 49TW/cm2. This is contrasted by
experimental values of 30TW/cm2 and 34TW/cm2, re-
spectively. Apart from this apparent scaling issue, both
curves agree remarkably well within the error bounds.
These bounds have been extracted from the uncertainty
of the experimental Kerr-coefficients given in Ref. [8]. In

contrast, the error of our theoretical values has been esti-
mated from the comparison of our benchmark n2 values
with independent values in the literature.

From the coefficients for He, Ne, Kr and Xe shown in
[24], we deduce inversion intensities of 112, 89, 40, and
30TW/cm2, respectively. Our analysis also qualitatively
agrees with solutions of the time-dependent Schrödinger
Equation for atomic hydrogen [25] Agreement with corre-
sponding calculations for argon performed in Ref. [26] are
shown by the dashed-dotted curve in Fig. (3), indicating
a favorable agreement of the inversion intensity within
reasonable error margins. For the air constituents O2 and
N2, Figs. 3(b) and (c) show the experimentally measured
∆nKerr(I) in comparison to our theoretical derivations.
In order to apply the PPT model to molecular gases,
we employ the semi-empirical model of Ref. [27] with
Zeff = 0.53 and 0.9 for O2 and N2, respectively. For oxy-
gen, our theory yields a long-wavelength limit of n2(0) =
0.7 × 10−7cm2/TW, which agrees excellently with the
electronic contribution of n2(0) = 0.746× 10−7cm2/TW
computed in [28].

Despite of delivering higher inversion intensity than
reported in [8], our model nevertheless confirms plasma
clamping to occur at significantly higher intensities than
Kerr saturation. Figure 3(a) shows the refractive index
change ∆n(I) = n2I − ρ/2ρc induced by the generation
of free electrons with density ρ under experimental con-
ditions of [8]. ρc = meǫ0ω

2/q2
e is the critical plasma den-

sity. Clearly, plasma clamping is expected at intensities
beyond ≈ 100 TW/cm2, i.e., well above Kerr saturation.
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FIG. 3: Kerr saturation in (a) argon, (b) nitrogen and (c) oxy-
gen at 800 nm due to higher order Kerr terms [Eq. (3), solid
lines], classical filamentation model due to plasma clamp-
ing (dotted line), and experimental results [8] (dashed lines).
Dashed dotted line in (a) depicts TDSE results for argon
found in [26].

In a second simulation, we model the potential ef-
fect of depletion of neutral atoms on the index change.
Given a fraction p of ionized atoms, we compute n2(I) =
pn2,Ar+ + (1 − p)n2,Ar where p is computed under the
assumption of 90 fs Gaussian pulses using the ioniza-
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tion model of [13], duplicating experimental conditions
of Ref. [8]. In this case we yield a classical satura-
tion behavior (not shown), yet at much higher inten-
sities I > 250 TW/cm2 and without any index inver-
sion. Complete ionization of argon requires intensi-
ties of ∼ 300 TW/cm2, and even then only a 50% in-
dex change from n2 = 1.3 × 10−7 cm2/W at p = 0 to
n2 = 0.6 × 10−7 cm2 at p = 1 results. As this happens
nearly an order of magnitude beyond the inversion inten-
sities discussed previously, depletion effects can be clearly
ruled out.

These results shed new light on the long-disputed
mechanism behind filament formation. First and fore-
most, saturation of the Kerr effect cannot be explained
by inclusion of the next higher-order coefficient n4 alone.
Instead, similar as in the transition from third-harmonic
generation to high-harmonic generation, many coeffi-
cients start to act simultaneously. Nevertheless, the as-
sumptions of perturbative nonlinear optics are expected
to hold as long as the intensity does not exceed the va-
lidity of the MPI regime. Beyond that regime, a pertur-
bative expansion of the ionization rate provided by PPT
ceases to exist.

While a true depletion-caused saturation n2(I) =
n2(0)/(1 + I/Isat) can be developed into a Taylor se-
ries in I resulting in a sequence of n2k with alternating
signs, our model predicts that all n2k are positive until
the driving (k + 1)-photon process reaches about 75%
the ionization energy. This causes a nearly unperturbed
linear increase of the index change ∆nKerr up to a cer-
tain threshold. Above this threshold, ∆nKerr will rapidly
decrease and reach strong negative values. Comparing
the absolute values of n4 from our model with Ref. [8],
we generally compute smaller values than found in Taylor
series analysis of experimental data. This finding corrob-
orates that saturation of the Kerr effect may be perfectly
compatible with experimentally observed efficiencies of
fifth-order harmonic generation processes [10].

Despite its slightly different functional shape, our re-
sults qualitatively confirm the saturation behavior sug-
gested by Loriot et al.. This agreement strongly suggests
to include a saturation mechanism into future models
of filament formation. Modeling of white-light propa-
gation, however, may turn out to be difficult because of
the strong dispersion of the higher-order coefficients, and
methods for efficient modeling of dispersive nonlinearities
may have to be found. We believe that this work has im-
portant consequences for nonlinear optics in a large class
of materials, including gases, solids, and metameterials.
In fact, this may truly induce a paradigm shift in the
understanding of filamentation.
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