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The ability to explore the interior of materials for presence of inhomogeneities was recently demon-
strated by mode synthesizing atomic force microscopy [1]. Proposing a semi-empirical nonlinear
force, we show that difference frequency ω

−
generation, regarded as the simplest synthesized mode,

occurs optimally when the force is tuned to Van der Waals form. From a parametric study of the
probe-sample excitation, we show that the predicted ω

−
oscillation agrees well with experiments. We

then introduce the concept of virtual resonance to show that probe oscillations at ω
−

can efficiently
be enhanced.

By the virtue of nonlinear action, electronic heterodyn-
ing has advanced the field of telecommunication and has
been further popularized for example in the world of mu-
sic by Leon Theremin and his majestic instrument [2]. In
atomic and molecular physics, the second-order nonlinear
process of sum-frequency generation spectroscopy and its
closely related case of second-harmonic generation have
proved a powerful surface probe with a detection sen-
sitivity better than a monolayer of adsorbed molecules
[3]. The materialization of similar nonlinear processes in
nanomechanical systems was recently demonstrated em-
ploying a generalized modality of force microscopy called
mode synthesizing atomic force microscopy (MSAFM)
[1]. However, unlike their optical counterparts, in the
case of the nonlinear mechanical interaction between the
probe and the sample, the engendered oscillations at
a variety of mixed frequencies prove to be particularly
functional for subsurface exploration such as imaging
nanoparticles inside a mammalian cell [4] or the ligno-
cellulosic fibrils confined within the plant cell walls [1].

A subset of the synthesized modes in MSAFM corre-
sponds to those stimulated via frequency difference gen-
eration. The lowest order state in this set corresponds to
probe oscillations at a frequency ω− equal to the differ-
ence in the frequencies of the two applied (input) forcings
Fc and Fs acting on the probe and the sample, that is,
ω− = |ωs−ωcu|, as sketched in Fig. 1. The experimental
utility of this ω− state as a subsurface probe has been pre-
liminarily demonstrated recently [4–7], while modeling
efforts have been reported by Cantrell et al. [11, 12]. The
ω− generation may be viewed upon as being analogous
to the parametric process of χ(2) nonlinearity in the op-
tical polarization of an atomic system albeit without an
amplification effect [8]. Here, we show semi-analytically
that the origin of the frequency difference generation can
be described by a nonlinear force which is optimum in
the van der Waals limit. Furthermore, by considering the
special case where Fc and Fs comprise monoharmonic ex-
citations, we show that the experimentally measured re-
sponse of the coupled system at the difference frequency
agrees well with the simulations of the semi-analytical
results. Aided by our findings, we introduce the concept

Nonlinear 

module

Probe 

Sample 

ωs

ωcu |ωs−ωcu|

ωs+ωcu

piezoelectric film x

y

x

y

L

PSDlaser

o

o

u(L,t)

rL

ro

rs

rL- rs

λcu

    λ1
cr

ωs

ωcu

ω
c
u
+
 ω

s

ω
s
- 
ω

c
u

ω
c
u

ω
s

ω

|
F
[S

(t
)]

|2

S(t)

Mica

FIG. 1: Schematic representation of the nonlinear frequency
difference generation. Top: The interacting coupled probe-
substrate ensemble envisioned as a nonlinear module with
well-defined eigenstates. The applied (incident) and gener-
ated (outgoing) fields are color-coded for their frequencies.
Bottom: Modeling geometry of the oscillating probe interact-
ing via the tip apex with the oscillating sample (mica).

of virtual resonance and experimentally demonstrate an
amplitude enhancement occurring as a result of the appli-
cation of a third weak forcing with a frequency tuned to
the difference frequency generated by the original applied
forcings. Through this process, one may therefore achieve
a resonance-like behavior from an off-resonance spectral
position. This first-time observation, potentially leading
to novel dynamic multifrequency force microscopy, has
not been previously reported.

In MSAFM, both the sample and the probe receive
external elastic energy from piezoelectric substrates that
are driven by voltage waveform generators giving rise
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to primarily transversal forces. Within the framework
of continuum mechanics, Hamilton’s extended principle
may thus be employed to obtain the partial differential
equation for the elastic wave propagation in the micro-
cantilever (length L, density ρ, Young’s modulus E, mo-
ment of inertia I, and tip-mass me) shown in Fig. 1.
Here, we aim to numerically show a) how ω− oscillations
emerge when tuning the power form of the interaction
force, and b) how these oscillations compare to measure-
ments. Noting the transformation r̄ = r̄o′ + r̄′, t = t′, and
setting r̄o′ = (0, h(t), 0), the action

∫ t2

t1
(δT −δU+δW ) =

0, where the integrand is the sum of the variations in the
kinetic energy T , the potential energy U , and the virtual
work W, yields the PDE of the probe in the form:

ρutt(x, t) + ρhtt(t) + EIuxxxx(x, t) + cuxt(x, t) = 0,

subject to the boundary conditions u(0, t) = ux(0, t) =
uxx(L, t) = 0, and

meutt(L, t) +mehtt(t)− EIuxxx(L, t) = Γ(t), ∀t

where a general time dependent interaction force Γ(t),
to be specified, and a structural damping c have been
assumed in writing the virtual work, and the applied ex-
citation at r̄o′ has been incorporated in writing the ki-
netic energy. If we now assume that r̄s = ās sin(ωst+ϕs)
collectively represents the dynamics of the sample (with
the forcing at y = 0) and any internal scattering of
the ensuing elastic waves within the interior of the sam-
ple, for example as a result of an embedded particle,
then the probe-sample distance d(t) = |r̄L − r̄s| =
u(L, t) + h(t) − hs(t), being modulated in time, may
be used to express the spatial dependence of the in-
teraction force Γ(y, t). Subjecting the gap distance to
the condition d(t) ≥ d0 > 0, we propose the semi-
empirical interaction force Γ(t) = aad(t)

γa + ard(t)
γr ,

with aa > 0 and ar < 0. To solve the resulting nonlin-
ear, non-autonomous PDE, we employ an eigenfunction
expansion (assumed mode) method [9]. Being a Galerkin
approximation, this approach effectively casts the PDE
into a discrete form appropriate for numerical analysis.
Thus, homogenizing the boundary condition above via
the variable substitution u(x, t) = ζ(x, t) + Γ(t)g(x),
where βg(x) = 2x4 − 5Lx3 + 3L2x2, 0 ≤ x ≤ L is
a geometrical function (β = −18EIL), and expanding
ζ(x, t) =

∑n

i=1 φi(x)qi(t), where φi(x) are the eigenfunc-
tions of the probe while qi(t) are the generalized coordi-
nates, we can express the interaction force as:

Γ(t) = aa

[

n
∑

i=1

φi(L)qi(t) + Γ(t)g(L) + h(t)− hs(t)

]γa

+ ar

[

n
∑

i=1

φi(L)qi(t) + Γ(t)g(L) + h(t)− hs(t)

]γr

. (1)

We seek the power spectral density of the system S(ω) =
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FIG. 2: Behavior of nanomechanical frequency difference gen-
eration. a) Numerical simulation of the semi-analytical re-
sult obtained for the amplitude of oscillation at the differ-
ence frequency exhibited by the system shown in the inset,
as a function of the form of Γ. b) Experimental measure-
ment of the distance dependence d of the force (solid curves)
and the simultaneously detected amplitude of oscillation at
the difference frequency (contour) for a given set of excita-
tions ωcu = 4.00 MHz and ωs = 4.38 MHz yielding a peak
ω
−
= 380 kHz, close to the third resonance of the probe.

|F{S(t)}|2, with S(t) ∝ u(xr, t), where xr is the readout
segment of the probe (Fig. 1).

Denoting the oscillation wavelength corresponding to
an excited eigenmode with λκ

cr, κ = 1, 2, · · · , and that
of a non-resonant mode with λcu, we begin an MSAFM
session by imposing a forcing Fc at r̄o′ through h(t) =
acu sin(ωcut+ϕcu), and another at y = 0. After a prelim-
inary tuning of both frequencies ωcu and ωs, the feedback
is invoked to maneuver the probe in the spatial regime
where interatomic forces are active. Under these condi-
tions, that is, when d(t) is modulated, the discontinuous
probe response as a function of the probe-substrate dis-
tance (force curve) is shown in Fig. 2, where the z posi-
tion from which ω− is studied has been marked. Consid-
ering the probe oscillation at the difference frequency to
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constitute a synthesized mode, the result in Fig. 2 shows
that the amplitude is maximum when the z position cor-
responds to the probe just leaving the surface. To ex-
plain the formation of this new mode, as the amplitudes
of the two applied forcings are continuously increased, we
calculate the probe oscillation amplitude at the spectral
position ω− in the Fourier space. By studying the pair
(γa, γr), determining the power law of Γ(t), the emer-
gence of oscillations at ω− are shown in Fig. 2 exhibiting
an optimization for (γa, γr)=(-2,-8) corresponding to the
volume integrated Lennard-Jones potential [9, 10]. The
computed ω− oscillation amplitude shows a higher sensi-
tivity to the long-range van der Waals power form than
the short-range repulsive power form, which once turned
on at γr ≤ −8, exhibits little variation. Thus, frequency
difference generation appears to more crucially depend
on the particular power law of the long range forces and
does not appear for values outside γa = −2±ǫ, where ǫ is
small. The result suggests that, any nanoscale processes
that may, in an effective manner, modify the repulsive
form in the γr < −8 regime will not prevent ω− genera-
tion.

In order to further examine the frequency difference
generation by Γ, we choose to simulate the amplitude
of ω− oscillations in the parameter space spanned by
(ωcu, ωs) and compare the result with that obtained ex-
perimentally. Lock-in detection of S(t) referenced at ω−

over a mesh of (ωcu,i, ωs,j), i = j = 1, 2, · · · , N is shown
in Fig. 3. While the islands corresponding to ω− gener-
ation, in the simulated case appear more well-separated
than the experimental case, which includes smearing ef-
fects associated with the detector and electronic band-
widths and nonflat piezoelectric crystals’ spectral re-
sponse and signal noise, the trends are similar in both
cases.

The measurement of the generated ω− was sampled
at several points along the force curve of Fig. 2 in the
range from the point when the probe first contacts the
surface to the point when it looses contact. While excit-
ing the probe, a soft gold coated silicon nitride triangular
cantilever of spring constant k=0.06 N/m, and the sam-
ple, a freshly cleaved mica substrate, at 4.00 MHz and
4.38 MHz with as = ap = 2 Vpp, the distance rs − rL is
varied using the force curve mode of the AFM. Simulta-
neously, the evolution of ω− amplitude is measured using
a lock-in amplifier. Fig. 2 provides the distance depen-
dence of the ω− generation suggesting the possibility of
enhancing the signal by working in a configuration where
the attractive forces are predominant (i.e. closer to the
jump out of contact position). Clearly, no coupling can
be observed before the probe tip jumps into contact and
after it jumps out of contact with the sample surface.
The gradient presented in Fig. 2 (b) shows the enhance-
ment in the region where repulsive forces cease to be the
predominant component of the interaction.

While studies with respect to the power terms (γa, γr)
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FIG. 3: Comparison between the experimental measurement
(top) and theoretical modeling (bottom) of the oscillations
at the difference frequency exhibited by the nonlinear system
depicted by the inset. For this two stimuli case, an opera-
tional point (ωs, ωcu) may trace out an arbitrary path in the
frequency domain when carrying out multiple measurements.
The result presented in Fig. 4 may be obtained from any point
O of one such typical trace in the off-resonance region.

in Fig. 2 (a) provide important information on the nature
of the interaction at play in MSAFM, the combination
of other parameters such as the driving frequencies ωcu

and ωs, and amplitudes acu and as play a major role in
the experimental usefulness of the synthesized modes. In
Fig. 3 contour plots of a− as a function of the driving fre-
quencies ωcu and ωs exhibits a band of frequencies where
the amplitude of the signal is higher. The bands corre-
spond to the combination of frequencies matching with
the resonance of the flexural modes of the cantilever in
contact with the sample. The theoretical result of Fig. 3
(b) is indeed in agreement with the experimental data
presented in Fig. 3 (a) where a soft cantilever (k=0.06
N/m) in contact with mica was used for the measure-
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ment.
The studied nanomechanical frequency difference gen-

eration via Γ suggests the possibility of considering the
coupled materials (probe-substrate) in a state with a fre-
quency ω− that may be enhanced in a resonant fash-
ion. Remarkably, we can demonstrate the feasibility
of this virtual resonance by invoking a weak incident
driving (ωweak) yielding an effective enhancement of the
oscillations at ω− as shown in Fig. 4. Here, a har-
monic waveform of amplitude aweak/acu = 0.1 (in gen-
eral, aweak ≪ acu, as, · · · ) was electronically added to
the piezoelectric substrate of the probe, although quali-
tatively a similar result can be achieved by an addition
to sample’s piezoelectric substrate. We note that in this
essentially three stimuli system, higher-order couplings
(beyond ω− formation) can occur, which in conjunction
with contributions from the mixing of the weak excita-
tion and the higher-order oscillations can give rise to the
observed minor spread in the data of Fig. 4. It is evi-
dent that such virtual resonance can potentially lead to
innovative methodologies in nanometrology.
To summarize, we have shown that within the pre-

sented semi-analytical model, a number of important dy-
namical aspects of nanomechanical frequency difference
generation can be explored. The nonlinear coupling be-
tween the tip of the probe and the surface of the sample in
MSAFM exhibits a complex dynamics with tremendous
opportunities for nanoscale imaging. While more stud-
ies are warranted, such force induced oscillator coupling
may potentially be suitable for the detection of embed-
ded nanoscale inhomogeneities enhancing the ability to
non-invasively explore material subsurface for presence
of nanoparticles. The theoretical behavior of the long-
range forces is consistent with the experimental observa-
tion that the maximum phase change is obtained when
probe is retracted from it is original collapse point to the
surface. While the coupling is amplified whenever ω− of
the coupled system coincides with a (typically low-lying)
resonance ωκ

c of the cantilever, a new enhancement mech-
anism was demonstrated by introducing the concept of
virtual resonance. We have in essence described a pro-
cess where by using one or several waves of an external
elastic field, large effective cross sections for elastic ab-
sorption can be attained without the usual requirement
of elastic resonance of the oscillator species. Therefore,
the applications can be extended to include frequency
tuning to create “virtual” resonance conditions in sys-
tems lacking prior “real” resonance at a given frequency.
The process can be envisioned as atomic collisions, where
dipole-dipole coupling between two atoms have been pro-
posed to give rise to new nonlinear optical processes [13].
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FIG. 4: Concept and characterization of virtual resonance.
The inset depicts the process of frequency difference genera-
tion and the subsequent process of oscillation enhancement.
The newly formed state is shown to be amplified by exhibit-
ing a resonance-like response when stimulated with a weak
applied forcing. The data was obtained for incident driving
frequencies ωcu = 4.00 MHz and ωs = 4.42 MHz yielding a
peak ω

−
= 420 kHz. When S(t) is used as the input, the ordi-

nate displays the output of the lock-in amplifier with reference
to ωweak, which is tuned in the interval of the abscissa.
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