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Abstract

An efficient algorithm is developed to construct disconnectivity graphs by a random walk

over basins of attraction. This algorithm can detect a large number of local minima, find energy

barriers between them, and estimate local thermal averages over each basin of attraction. It

is applied to the SK spin glass Hamiltonian where existing methods have difficulties even for a

moderate number of spins. Finite-size results are used to make predictions in the thermodynamic

limit that match theoretical approximations and recent findings on the free energy landscapes

of SK spin glasses.

PACS numbers: 05.10.Ln, 75.10.Nr, 02.70.Rr

Disconnectivity graphs (DGs) [1,2], widely used for representing energy landscapes, summarize

local minima and energy barriers of an energy function into a tree. The DG of a continuous energy

surface can be constructed by computational approaches that search for local minima and saddles

based on the gradient and the Hessian matrix [3]. However, such approaches cannot be applied to

Ising Hamiltonians defined on discrete spins. For example, the Hamiltonian of the SK spin glass [4]

with zero external magnetic field, which is the focus of this paper, is

H(s) = −
∑

i<j

Jijsisj, (1)

where s = (s1, . . . , sN ), si ∈ {±1}, is a vector of N spins and Jij is the interaction between si and

sj. Many studies have been conducted, such as in [5–9], to characterize the free energy landscape

of the SK spin glass by investigating solution structures of the TAP free energy equations [10].

See [11] for a review and more references. These studies reply heavily on specific assumptions for

the distribution of the disorder J = {Jij}. On the other hand, computational approaches have

been developed to construct DGs for spin glass Hamiltonians [12–18]. From DGs one may extract

microscopic information to characterize free energy landscapes. In principle, these approaches can
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be applied given any possible distribution of the disorder, but, unfortunately, they are feasible only

for small-scale systems with less than or around 30 spins, due to the computationally expensive

nature of DG construction.

The purpose of this paper is to develop an efficient algorithm that is able to construct DGs

containing hundreds of local minima for spin systems withN on the order of 100 and possibly larger.

The algorithm is motivated by the broad success of the Wang-Landau (WL) algorithm [19,20] which

produces a random walk in energy space. To build a DG, we aim to generate a random walk over

the basins of attraction of local minima. Suppose that the Hamiltonian H(s) has K local minima,

v1, . . . , vK . The basin of attraction of vk, denoted by Dk, is the set of configurations which will be

sent to vk by steepest descent that recursively flips the single spin giving the maximum decrease

in H(s). If a random walk can be produced over all basins of attraction, D1, . . . ,DK , not only do

we have all the local minima but also may estimate local thermal averages over every Dk. Such

estimation on basins of attraction is a key to the utility of the inherent structure approach [21,22]

and the superposition approach [23]. Furthermore, frequent transitions between basins must occur

during the walk. We say two configurations x and y are neighbors, denoted by x ↔ y, if they differ

by only one spin. As each local move is a single-spin flip, cross-basin moves can be used to find the

barrier between two basins defined as Bkℓ = minp∈Pkℓ
maxs∈pH(s), where Pkℓ is the collection of

all paths between vk and vℓ (k 6= ℓ) in the configuration space. For a spin system,

Bkℓ = min{H(x) ∨H(y) : x ∈ Dk, y ∈ Dℓ, x ↔ y}, (2)

where H(x) ∨H(y) ≡ max[H(x),H(y)]. Thus, keeping track of cross-basin moves, we may obtain

a rough estimate of Bkℓ which can be refined by a ridge descent algorithm to be introduced later.

With local minima and barriers detected constructing the DG of H(s) is trivial.

Since the number of minima increases exponentially with N for SK spin glasses, we follow

the practical convention to construct DGs with K lowest local minima for a big K. For the sake

of understanding, we first describe the algorithm in the context that K local minima of H(s)

have already been detected. These local minima are used to partition the space into K basins,

D1, . . . ,DK , and their complement D0. As energy of SK spin glasses is continuous, a ladder of

energies, u0 < u1 < · · · < uL = ∞, where u0 is a lower bound of H(s), are employed to partition

the energy space into L intervals. Then, our goal is to generate a random walk over all (nonempty)

subregions, Dkj = {s ∈ Dk : H(s) ∈ [uj−1, uj)}, k = 0, . . . ,K and j = 1, . . . , L, where two indices,

the basin index k and the energy index j, are used for space partition. The desired random walk

can be implemented by a generalized WL (GWL) algorithm [24, 25], where energy on a subregion

Dkj is not a constant. Let θkj denote the (unnormalized) statistical weight of Dkj in the Boltzmann

distribution, i.e., θkj ∝
∑

Dkj
e−βH(s), where β is the inverse temperature. A flat histogram over all

Dkj can be produced if the probability of visiting s ∈ Dkj is proportional to e−βH(s)/θkj . Since θkj

is unknown we set θ
(1)
kj = 1 at the first iteration of the walk. At iteration t, let θ

(t)
kj be the estimate
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of θkj and xt and y be the configurations before and after a randomly chosen spin is flipped. A

steepest descent operation is applied on y to find its basin index, in which the energy change of a

single-spin flip can be computed efficiently by utilizing the additive structure in (1). If y is not in

the basin of any of the K minima, then y ∈ D0. In general, if xt ∈ Dkj and y ∈ Dℓi, the Metropolis

ratio from xt to y is

r(xt → y) = min
{

1, eβ[H(xt)−H(y)] θ
(t)
kj /θ

(t)
ℓi

}

. (3)

Each time a subregion Dkj is visited, the weight θ
(t)
kj will be updated to θ

(t+1)
kj = θ

(t)
kj f with a

modification factor f > 1. Following the WL algorithm, f is reduced to
√
f when the flatness of

the histogram becomes acceptable (maximal fluctuation < 25%) since the last reduction of f . If

the energy ladder is dense enough such that the energy in [uj−1, uj) is approximately a constant,

then the local density of states Ωkj ∝ θkje
βuj−1 , where Ωkj is the number of configurations in the

basin Dk with energy uj−1. In this scenario, local thermal averages over a basin of any temperature

can be obtained via estimated θkj, similar to the calculations in [18–20].

Suppose the random walk has been simulated for n iterations. Let (xt, xt′) be a pair of

configurations simulated at two consecutive iterations, i.e., |t − t′| = 1. For any two basins Dk

and Dℓ we keep track of the configuration pair

(a, b)kℓ = arg min
(xt,xt′)

{H(xt) ∨H(xt′) : xt ∈ Dk, xt′ ∈ Dℓ},

for 1 ≤ t, t′ ≤ n. At the last iteration, (a, b)kℓ is the pair that minimizes (2) among all cross-basin

neighbors generated by moves between the two basins, which provides a rough estimate of Bkℓ. A

ridge descent algorithm is developed to refine the estimate. Let (a0, b0) = (a, b)kℓ such that a0 ∈ Dk

and b0 ∈ Dℓ. For t = 1, 2, . . ., find iteratively

at = argmin
a

{H(a) : a ∈ Ngb(bt−1) ∩Dk},
bt = argmin

b
{H(b) : b ∈ Ngb(at) ∩Dℓ},

until bt−1 = bt, where Ngb(s) is the set of all the neighbors of s. This iterative algorithm moves

(a0, b0) downhill along the ridge separating the two basins. For every pair of k and ℓ, the barrier

Bkℓ will be estimated by H(at) ∨H(bt) at the final iteration of the ridge descent.

Next we discuss how to identify K local minima in the burn-in period of the random walk.

A collection of local minima, V , is dynamically accumulated using the same GWL update (3) in

the burn-in period, but with a constant modification factor f ≡ e. Initially, V is empty. In every

iteration, a local minimum is located by steepest descent starting from the proposed configuration

y. Then, V is updated to include the lowest K minima identified so far or all of them if there are

less than K minima identified. With ln f ≡ 1, ln θ
(t)
kj simply records the number of visits to Dkj .

This makes it easy to update these weights when the local minima in V are updated. As pointed

out in many previous studies, the WL update with a big f enables the walk to reach all subregions
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very quickly, which is the key to detecting sufficient low-energy minima.

The proposed algorithm may be tested on the SK spin glass model (1), where the Jij are

independent Gaussian random variables with mean 0 and variance 1/N . Hereafter, only rescaled

energy (energy per spin) will be used. We constructed DGs for small-scale systems with N = 25

for which exact results can be obtained via enumeration as well as larger N where enumeration is

impossible. For each N the algorithm was applied to 100 independent samples of J = {Jij} with

β = 1/Tc = 1. A rough energy range of interest of this model is [−0.8,−0.3]. Accordingly, the

energy space was partitioned into L = 10 intervals with uj = −0.8 + j∆u for j = 0, . . . , 9, where

∆u = 0.1 for N ≤ 60 and ∆u = 0.05 for N ≥ 70.

For N = 25, our algorithm was applied to each sample with a total of 1× 107 MC sweeps. We

chose K = 500 which turned out to be greater than the total number of minima for all the samples,

ranging from 56 to 310. Compared to results from enumeration, the constructed DGs were highly

accurate. Our algorithm did not miss a single minimum for any sample. Recall that due to the

use of steepest descent our algorithm will not produce any false minima. The average absolute

energy difference between estimated and exact barriers was 1.4× 10−7, which was extremely small

relative to the energy range of the model. This demonstrates that the algorithm indeed accurately

recovered most energy barriers. In fact, our algorithm recovered exactly all the barriers for 99 out of

the 100 samples. Finding barriers is a difficult job especially for discrete Hamiltonians. The result

here highlights the advantage of simulating a random walk over basins of attraction in building

DGs. The average acceptance rate for the MC moves was ∼30%. Thus, by exploring only 9% of all

configurations our algorithm was able to construct DGs almost identical to those by enumeration.

We applied our algorithm to N = 40, 50, . . . , 100, aiming at constructing DGs for the lowest

K = 500 minima. Each run consisted of 5× 108 MC sweeps. The acceptance rate for MC sweeps

was > 15% for each N , averaging over the samples. At the final iteration, ln f decreased below

10−6 for most of the samples with N ≤ 60 and was on the order of 10−5 to 10−3 for N ≥ 70

(Table 1). These results suggest that our algorithm well explored identified basins and made

frequent transitions between them, which is sufficient for constructing DGs although estimation of

the weights θkj may not be very accurate for large N . Figure 1 shows the DG constructed for a

sample with N = 100. One sees two almost identical subtrees, each containing a ground state and a

few groups of local minima, joining at the highest detected barrier. The identical structure between

the two subtrees, due to the fact that H(−s) = H(s) (1), gives a validation of the DG. However,

the algorithm did not recover the energy landscape for those missing high-energy minima. This

limitation is inevitable due to the exponential increase in the complexity of SK spin glasses. To

quantify the statistical error of a constructed DG, we applied independently our algorithm to this

sample ten times. Remarkably, all the identified local minima and at least 95% of the estimated

barriers were exactly identical between any two runs. Furthermore, we systematically compared the

two subtrees of a DG to measure the accuracy of our algorithm. For all N , the two subtrees of every

sample contained identical sets of local minima, up to reversal of all the spins, and substantially
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Table 1: Convergence and accuracy for N ≥ 40. Note: − log(ln f) is the negative logarithm (base
10) of the median, over 100 samples, of ln f at the end of simulation; η is the percentage of barriers
that are identical between the two subtrees of a DG, averaging over 100 samples.

N 40 50 60 70 80 90 100

− log(ln f) > 6 > 6 > 6 5.4 4.8 4.2 3.9
η(%) 100 99.7 99.1 99.3 97.6 91.2 85.0

−
0.

76
−
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72

−
0.

68

E
ne

rg
y

Figure 1: A constructed DG for the SK spin glass with N = 100. A terminal node (leaf) on the
tree represents a local minimum and an internal node (branch point) represents an energy barrier,
with energy levels given by the vertical axis. The statistical error between independent runs is very
small (see text for more discussion).

overlapping sets of barriers (Table 1), which demonstrates the reliability of the constructed DGs.

Define the barrier height h of a minimum as the energy difference between the minimum and

its nearest barrier (its parent on the tree). We grouped minima according to their energy u relative

to the global minimum u∗ and studied the relation between 〈h〉 and N for each group, where 〈X〉
denotes the average of X over samples of the disorder. We analyzed five groups of minima with

(u − u∗) ∈ [0.01(z − 1), 0.01z) for z = 1, . . . , 5. In each of these energy intervals, our algorithm

detected more than 1000 minima over the 100 samples for N = 100. A power law, 〈h〉 = cNλ,

was fitted with extremely high R2(> 0.98) for each group, where R is the correlation coefficient

between ln〈h〉 and lnN . The high consistency across different N serves as a confirmation for the

accuracy of this result. Figure 2(a) shows the fitted power laws for three groups (z = 1, 3, 5), from

which we see the three lines are almost parallel to each other and that 〈h〉 clearly decreases with

the increase of the energy of a minimum. The estimated λ for z = 1, . . . , 5 were −1.70 ± 0.06,

−1.63 ± 0.07, −1.54 ± 0.09, −1.47 ± 0.08 and −1.53 ± 0.09, respectively. These powers were not

significantly different especially between neighboring groups. This result implies that the barrier

height of a minimum vanishes as N → ∞ and the rate of decay is comparable among minima with

5



40 50 60 70 80 90 100

0.
00

2
0.

00
4

0.
00

8

N

<
h>

(a)

[0, 0.01)
[0.02, 0.03)
[0.04, 0.05)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

|q|

<
P

(|
q|

)>

(b)

40
70
100

Figure 2: Results for N ≥ 40. (a) Average barrier height 〈h〉 and its fitted power laws for three
groups of minima with energy ranges given by the intervals in the legend. Log scale is used for both
axes. (b) 〈P (|q|)〉 for T = 0.4. Solid lines with symbols are results for N = 40, 70 and 100 from
this study. Dashed and dotted lines are, respectively, the result for N = 128 obtained by Monte
Carlo simulation and the result of Parisi’s prediction as N → ∞, both from [26].

different energy. Thus, all minima become marginally stable as N → ∞, which is consistent with

the recent finding that each minimum and its nearby saddle on the free energy surface of the SK

spin glass coalesce in the thermodynamic limit [7, 8].

A constructed DG may also provide qualitative understanding about pure states. When the

temperature T is low, it is reasonable to approximate a pure state α by a local minimum and

determine its statistical weight by wα ∝ e−Nuα/T , where uα is the energy of the local minimum.

Then, one may find the probability distribution, P (q) =
∑

α,γ wαwγδ(qαγ − q), for the overlap qαγ

between two pure states, α and γ, and its average, 〈P (q)〉, over samples of the disorder. From the

constructed DGs we approximated 〈P (q)〉 for T = 0.4. Since the distribution is symmetric around

q = 0, we plot 〈P (|q|)〉 in Figure 2(b). Our approximation is compared against direct Monte Carlo

simulation for N = 128 and Parisi’s prediction as N → ∞ under the same temperature [26]. With

the increase of N , the overlap distribution from our approximation becomes closer to the expected

shape and the location of the peak for N = 100 is in good agreement with Parisi’s prediction. This

shows the utility of DGs in characterizing the key features (e.g., the order parameter) of spin glasses

for low temperature. However, when the temperature is high, say close to Tc, the statistical weight

of the missing high-energy minima will be larger and this approximation is likely to underestimate

P (|q|) for small |q|.
Computational approaches that combine local optimization and Monte Carlo sampling, such

as this work, have been developed for global optimization with applications to protein and peptide

models [27–29]. These existing methods were not designed to construct DGs for Ising spin models

and are different in nature from this work. In addition, the basin-sampling approach [30] employs

the WL algorithm to construct the total energy density of states, which shares some common
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features with the present work. Although we have focused on the SK spin glass with Gaussian

interactions, it should be noted that our algorithm is applicable to other possible choices of the

disorder J and many other spin systems. For a continuous system, our method can be employed to

find local minima with a suitable local optimization algorithm and provide rough energy barriers

which may be refined with alternative geometry optimization methods [3].
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by NSF grant DMS-0805491.
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