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The exchange coupling between quantum dot spin qubits is isotropic, which restricts the types
of quantum gates that can be formed. Here, we propose a method for controlling anisotropic in-
teractions between spins arranged in a bus geometry. The symmetry is broken by an external
magnetic field, resulting in XXZ-type interactions that can efficiently generate maximally entan-
gled Greenberger-Horne-Zeilinger (GHZ) states or universal gate sets for exchange-only quantum
computing. We exploit the XXZ couplings to propose a qubit scheme, based on double dots.
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Electron spins in quantum dots are among the most
promising candidates for qubits, due to their perceived
scalability and integrability with current semiconduc-
tor technologies [1], and their long coherence and re-
laxation times [2–4]. The spin-dependent component of
the Coulomb interaction, known as exchange coupling,
has arisen as the most prominent tool for coupling spin
qubits, since it is fast and controllable via electrostatic
top-gates [5]. The exchange interaction produces an
isotropic Heisenberg coupling between the spins, which
by itself does not provide a universal set of quantum
gates, due to its high symmetry [6, 7]. The existence
of a lower-symmetry coupling would therefore enhance
the toolbox for spin qubits, while providing new op-
portunities for efficient gating. For example, we con-
sider the exchange-only gating scheme of DiVincenzo et
al., which encodes three physical qubits into a logical
qubit [7, 8]. If the Heisenberg symmetry is reduced from
XXX (isotropic) to XXZ (axial), then the gating require-
ments will be ameliorated, both in terms of the num-
ber of physical qubits and the number of gate operations
[9]. The XXZ interaction also provides added entangling
power, since it can be used to efficiently generate a multi-
qubit, maximally entangled Greenberger-Horne-Zeilinger
(GHZ) state [10]; this does not appear to be possible with
isotropic interactions. Spin-orbit coupling also produces
a form of anisotropic interaction between spins in semi-
conductor quantum dots [11], which can be used to gen-
erate universal quantum gates [12]. While the effective
interaction depends on magnetic field, it is difficult to
tune [13], and in materials like silicon, its effect is almost
negligible.

In this paper, we demonstrate how a controllable
anisotropic exchange interaction can be realized for elec-
tron spins in semiconductor nanostructures. More specif-
ically, we show that XXZ couplings can be obtained and
controlled in different quantum dot geometries. The full
range of new behaviors we explore can be observed in a
spin bus geometry, which is a linear array of quantum
dots with strong, static interactions, and weakly cou-
pled external qubits. Such architectures can potentially
overcome the severe short-range nature of the exchange

coupling and implement efficient multi-qubit entangle-
ment. Here, we are particularly interested in adiabatic
gate operations involving the bus ground state [14–16].
We will demonstrate that the functionality of the bus
is determined mainly by the degeneracy of its ground
state. For example, a doubly degenerate ground state
forms a pseudo-spin, which can be coupled to other spins
or pseudo-spins. A non-degenerate ground state cannot
store information, but it may act as a medium for cou-
pling external qubits via virtual excited states. We will
show that an applied magnetic field allows us to navigate
between these degenerate and non-degenerate operating
modes. We will further demonstrate that anisotropic in-
teractions may easily be tuned by several different meth-
ods. In addition to varying the magnetic field, these in-
clude varying the length of the bus, the average strength
of the couplings between the spins, or the connection
points between the bus and the external qubits. Thus, in
addition to providing a channel for long range quantum
communication, the spin bus also serves as a mediator for
anisotropic qubit couplings. Finally, we will describe an
application for anisotropic couplings in a simple, bus-like
geometry, in which logical qubits are encoded in double
quantum dots in a uniform magnetic field.
Theoretical model. Our goal is to compute the effective

interactions between a qubit and a spin bus, or between
two qubits coupled through a bus. The bus is composed
of two or more spins in a linear geometry, while the qubits
may also be composed of one or more spins. The key to
making this architecture useful for quantum processing
is to ensure that the low energy manifold of eigenstates
in the bus is separated from all other energy levels by a
gap [14]. Even when the bus is perturbed by the qubit
couplings, it should not be excited outside this manifold.

Our method requires the application of a magnetic
field. However, the Zeeman splitting of the qubit states
must be small compared to the energy gap between the
ground and excited bus states, to avoid bus excitations.
There are several ways to ensure this. On possibility is
to set up an inhomogeneous magnetic field, as shown in
Fig. 1(a). This provides an average, non-zero field on the
bus, with a much smaller field on the qubits. In practice,
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FIG. 1. (Color online) Typical architectures for generating
XXZ couplings. (a) A spatially varying magnetic field applied
to a long spin bus, with a small local field on the qubits. (b)
Coupled two-spin qubits, in a uniform magnetic field.

large field gradients are difficult to achieve in the labo-
ratory. However, recent experiments with micromagnets
have demonstrated gradients that are sufficient for our
purpose [17]. A long bus can also reduce the gradient
requirements and simplify the experiment. A second ge-
ometry of interest utilizes a small but uniform magnetic
field, which will be easier to implement experimentally.
In this case, we will show that only an even size bus pro-
duces XXZ interactions. The final geometry we consider
overcomes the constraint of small Zeeman splitting. How-
ever, we pay a price that the external qubit must contain
at least two spins. The simplest geometry of this type
is shown in Fig. 1(b), and will be discussed at the end
of this paper. In order to provide the most general and
least complicated analysis, we now focus on the geome-
try consisting of a uniform magnetic field applied to the
bus, with a small magnetic field on the qubits. However,
the results we obtain are similar to other geometries; the
emergence of XXZ couplings appears to be ubiquitous.

The full system Hamiltonian is given by

H = Hb +Hq +Hi , (1)

where the unperturbed system consists of bus (b) plus
qubits (q). The bus consists of an antiferromagnetic spin
chain of size N , with isotropic bare couplings:

Hb = Jb

N−1∑
j=1

sj · sj+1 −Bb

N∑
j=1

sj,z . (2)

Here, Jb is the intra-bus coupling strength, assumed to
be uniform, sj is the spin operator for the jth bus node,
and Bb is the uniform external magnetic field on the bus.
Throughout this paper, we adopt Jb as our energy unit,
and we define the direction of Bb as ẑ.

We allow a qubit to be coupled to any of the bus nodes,
with the unperturbed qubit Hamiltonian given by

Hq =

N∑
j=1

Bj · Sj . (3)

FIG. 2. (Color online) Energy spectra for two different spin
buses of size (a) N = 10 and (b) N = 11, as a function of
uniform magnetic field Bb. Note that energies and magnetic
fields are expressed in unit of the bus spin coupling Jb. For
each plot, we show just the ten lowest energy levels.

Here, Sj is the spin operator for the jth qubit, and Bj is
its local magnetic field, which can be modified by a local
current or nanomagnet [17]. The bus-qubit coupling is
assumed to be perturbative, so that it does not disturb
the general manifold structure:

Hi =

N∑
j=1

JjSj · sj . (4)

For qubit j, the coupling Jj may be set to zero; typically,
we will only consider one or two qubits coupled to the
bus. More generally, Jj will be turned on and off as a
function of time, in the course of bus operations.

Some typical energy level diagrams for the bus are
shown in Figs. 2(a) and (b). These energy levels were
previously characterized at zero-field, where it was shown
that the operation of the bus depends on its size [14, 16].
In the present work, we go on to show that the key bus
characteristic, which determines its behavior at any field,
is the 1- or 2-fold degeneracy of its ground state. We now
perform separate analyses of these two regimes.

Noncritical regime. When the magnetic field on the
bus is tuned to be away from a level crossing, the spin bus
is characterized by a unique and non-degenerate ground
state. Therefore, when the qubit-bus couplings Jj are
weak, and turned on adiabatically, the qubits cannot af-
fect the state of the bus. When two or more external
qubits are simultaneously coupled to the bus, it can me-
diate an effective interaction between them. However,
this occurs only via virtual excitations of the bus.

We now derive the effective Hamiltonian for the qubits
by treating Hi as a perturbation. Since the spectral gap
of the spin bus is of order Jb/N , the expansion parame-
ter is given by JjN/Jb, which can easily be made small,
experimentally. The full Hamiltonian is then projected
onto a subspace where the bus is in its ground state man-



3

ifold [18], giving

H̃ = ε0 +

N∑
j=1

B̃j · Sj (5)

+

N∑
j>j′

[
J̃j,j′ (Sj,xSj′,x + Sj,ySj′,y) + ∆̃j,j′Sj,zSj′,z

]
,

where εm is the energy of bus eigenstate |m〉, and m = 0
corresponds to the ground state. Note that εm, and the
composition of |m〉 in the spin basis, are both functions
of Bb. The effective coupling constants in Eq. (5) are
given by

B̃j = Bj + Jj〈0|sj,z|0〉ẑ , (6)

J̃j,j′ = −2
∑
m>0

JjJj′

εm − ε0
〈0|sj,x|m〉〈m|sj′,x|0〉 , (7)

∆̃j,j′ = −2
∑
m>0

JjJj′

εm − ε0
〈0|sj,z|m〉〈m|sj′,z|0〉 . (8)

We note that qubit j experiences an effective field B̃j that
is modified, at first order in the perturbation, by a ‘local
field’ 〈0|sj,z|0〉 at position j. Since 〈0|sj,z|0〉 alternates
in sign [14, 16] and has an inhomogeneous magnitude,
this produces a built-in field gradient. Such gradients
can be used to induce qubit rotations [5]. The effective

qubit couplings J̃ and ∆̃ arise at second order, for reasons
described above. Note that when multiple qubits are
coupled to the bus simultaneously, the resulting network
is fully connected.

At zero magnetic field, there is no broken symmetry,
so according to Eqs. (7) and (8), we should have J̃ =

∆̃. At non-zero fields, however, the coupling anisotropy
is ubiquitous, even when the field is uniform. This is
demonstrated in Fig. 3(a), where we take Bj = Bb �
Jb, and consider an even-size bus. The anisotropy J̃/∆̃
exhibits an approximate quadratic dependence in both
the magnetic field and the bus size.

The preceding example provides an opportunity to ex-
plain the emergence of anisotropy. The effective qubit
couplings J̃ and ∆̃ are mediated by virtual excitations of
the bus from its ground state, which is non-degenerate
and spin-0. The predominant processes involve the low
energy, spin-1 bus manifold, which has three eigenstates.
The x, y and z components of the effective coupling de-
pend on different excited states, as per Eqs. (7) and (8).
A non-zero magnetic field lifts the degeneracy of the spin-
1 manifold, favoring the excitation to the lowest of these
energy levels. This leads to an approximate expression
for the anisotropy, given by J̃/∆̃ ≈ 1 + B2

b/E
2
g where

Eg = ε1 − ε0 at zero field. Since the ground state gap
Eg depends on bus size as N−1 [14], this also explains
the quadratic behavior in Fig. 3(b). Note that the pres-
ence of a spectral gap is essential for spin bus opera-
tion. For both isotropic and anisotropic bus couplings,
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FIG. 3. (Color online) Plots of effective coupling parameters

J̃ (solid black) and ∆̃ (dashed red), or the coupling anisotropy

ratio J̃/∆̃, between two qubits coupled through an even-size
bus, with Jj = 0.02 Jb and a uniform magnetic field. (a)
The two qubits are coupled to opposite ends of a bus of size
N = 10, with a variable field. (b) The two qubits are coupled
to opposite ends of a bus with constant field Bb = 0.1 Jb and
a variable bus size. (c) and (d). Qubit 1 is attached to node
j = 1 on a bus of size N = 10, with Bb = 0.2 Jb. Qubit 2
is attached to node j′. Here, j′ = 1 refers to the case where
both qubits are attached to node 1.

the gap scales as N−1, placing an effective bound on the
bus length [14]. The effective couplings in Eqs. (7) and
(8) depend on the local moments of the spin chain. Thus,
uniform and non-uniform magnetic fields will both lift the
degeneracy in similar ways. As an example, the field fluc-
tuations due to background nuclear spins will generate
small, inhomogeneous coupling anisotropies of the XYZ
type. We note that the coupling constants alternate in
sign, as shown in panel (c). The overall magnitude of the
coupling decreases slowly with qubit separation, while
the anisotropy generally increases, as shown in panel (d).
Critical regime. When the magnetic field on the bus

is tuned to be near a ground state level crossing, the
qubits can interact with the bus and affect its state. We
characterize the two bus states in the ground state man-
ifold as pseudo-spins |⇑〉 and |⇓〉. For definiteness, let us
define |⇓〉 to be the ground state on the left-hand-side
of the level crossing, and the excited state on the right-
hand-side. As before, we derive an effective Hamiltonian,
which now involves the pseudo-spins:

H̃ = ε⇑|⇑〉〈⇑|+ ε⇓|⇓〉〈⇓|+
N∑
j=1

B̃j · Sj (9)

+

N∑
j=1

[
J̃j (Sj,xSb,x + Sj,ySb,y) + ∆̃jSj,zSb,z

]
,
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with the effective coupling parameters

B̃j = Bj +
Jj
2

(〈⇑|sj,z|⇑〉+ 〈⇓|sj,z|⇓〉) ẑ , (10)

J̃j = Jj〈⇑|sj,+|⇓〉 , (11)

∆̃j = Jj (〈⇑|sj,z|⇑〉 − 〈⇓||sj,z|⇓〉) . (12)

In this case, the coupling anisotropy arises naturally,
since the pseudo-spins |⇑〉 and |⇓〉 generally have differ-
ent quantum numbers. The one exception is the odd-size
bus near zero-field, for which the pseudo-spins are both
spin-1/2. Note that in the critical regime, the qubits in-
teract directly with the bus, so the leading dependence
is first order in the perturbation. As a result, the qubit-
bus coupling is the same magnitude as the bare exchange
coupling.

Pseudo-spin qubits. As an application of these re-
sults, we now study the two-qubit geometry proposed
in Fig. 1(b). This scheme is of particular interest, exper-
imentally, due to its small size and the fact that it does
not require a large, inhomogeneous magnetic field. The
logical qubits are each composed of two spins with con-
stant coupling Jb. The coupling between the qubits Jq is
tunable, and the magnetic field is uniform and tuned to
the crossing point shown in the inset of Fig. 2(a). The
proposed qubit is a pseudo-spin, similar to the singlet-
triplet qubit of Ref. [5]. Solving the problem of coupled
pseudo-spins perturbatively, we obtain the effective inter-
action between the logical qubits, which takes the same
form as Eq. (9). The coupling constants are given by

B̃ = J̃/4 = ∆̃/2 = Jq/8, corresponding to an anisotropy
of 2. It is interesting to contrast our effective XXZ cou-
pling with the proposed Ising coupling between singlet-
triplet qubits [19]. In the latter case, the anisotropy is
more extreme, although the overall coupling strength is
weaker, since it arises from the electric dipole interac-
tion. The XXZ scheme is more stable against charge
dephasing, and the two approaches may be viewed as
complementary.

In summary, we have presented a scheme to gener-
ate anisotropic XXZ couplings in a system of quantum
dot spin qubits. The anisotropy is obtained by combin-
ing bare exchange interactions, which are fundamentally
isotropic, with an applied field. By varying the field,
we can control the anisotropy while tuning the system
through a series of quantum phase transitions. Although
we specifically considered uniform Jb bus couplings here,
we have also investigated the effect of disordered cou-
plings, numerically. Our main results are essentially un-
affected; the quadratic dependence of anisotropy on gap
size and magnetic field still holds. The primary effect of
disorder is on the spectral gap Eg [20]. We have previ-
ously noted that a large spectral gap will suppress bus
excitations and related decoherence mechanisms [14]. We
further emphasize that the bus only needs to remain co-
herent during gate operations, which are fast.

Our method shows particular promise for pseudo-spin
qubits formed of pairs of spins. To demonstrate the via-
bility of this scheme, we conclude by estimating the ex-
perimental parameters that would be required for suc-
cessful operation. We assume an electron temperature
of 100 mK. In order for the system to equilibrate prop-
erly into its ground state manifold, we require a ground
state gap on the order of Jb = 20 µeV. The desired level
crossing would occur at a field of 0.2 T, assuming a g-
factor of 2 for silicon. Jq = 2 µeV provides a perturbative
bare qubit coupling, resulting in an effective coupling of
J̃ = 1 µeV and ∆̃ = 0.5 µeV. Device parameters in this
range are generally consistent with the current state-of-
the-art. The most challenging aspect in this proposal is
the intra-qubit coupling Jb = 20 µeV. However, devices
with couplings on the order of 2 µeV have been demon-
strated in GaAs [5], and the exchange coupling is known
to depend exponentially on quantum dot separation, so
20 µeV appears feasible.
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