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Abstract

Similar to atoms and nuclei, semiconductor quantum dots exhibit formation of shells. Predictions

of magnetic behavior of the dots are often based on the shell occupancies. Thus, closed-shell quan-

tum dots are assumed to be inherently nonmagnetic. Here, we propose a possibility of magnetism

in such dots doped with magnetic impurities. On the example of the system of two interacting

fermions, the simplest embodiment of the closed-shell structure, we demonstrate the emergence

of a novel broken-symmetry ground state that is neither spin-singlet nor spin-triplet. We propose

experimental tests of our predictions and the magnetic-dot structures to perform them.
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Formation of shell structure is a ubiquitous feature in finite fermionic systems, such as

atoms, nuclei, and quantum dots (QDs) [1]. An effective potential, in which the fermions are

assumed to move independently, can be attributed to the underlying mean field, arising from

an interplay of particle-particle interaction and confinement. Open-shell atoms, e.g., Ag and

Fe, undergo a spontaneous symmetry breaking of the mean field and are magnetically active

due to their spin-polarized ground state (GS). For open-shell QDs doped with transition-

metal atoms, typically Mn, strong exchange coupling between a carrier spin and the impurity

spin is expected [2–4]. Such QDs exhibit magnetic ordering, which persists even up to room

temperature [5–7]. In contrast, closed-shell fermionic systems, e.g., noble gases, are known

for their stability and the total spin-zero GS, making them magnetically inert [8].

According to a theorem by Wigner [9], the GS of any non-magnetic two-electron system,

including a two-electron QD, is a spin-singlet. Thus, it would seem that closed-shell QDs

doped with Mn do not allow magnetic ordering. However, on the example of a two-particle

(two electrons or holes) system, we show that the Mn doping does alter the magnetic prop-

erties of closed-shell QDs. Surprisingly, we find a GS, which is neither a singlet nor a triplet,

and allows ordering of Mn-spin, owing to the spontaneously broken time-reversal symmetry

[10]. This mechanism of magnetism is different than in the open-shell systems, such as bulk

(Ga,Mn)As or (Cd,Mn)Te [11]. By definition, the open-shell systems have more of either

”spin-up” or ”spin-down” carriers. This is in contrast to the magnetic closed-shell state

considered here, characterized by zero total spin projection.

Carriers confined in a QD interact with magnetic ions via contact exchange interaction,

described by

Hex = − (Jex/N0)
∑

ij,αβ

ŝiαgαβ Ŝjβδ (ri − Rj) , (1)

where N0 is the cation density. The exchange integral, Jex, is typically ∼ 0.1 eV for electrons,

and ∼ −1 eV for holes. Carrier and magnetic ion positions are denoted by ri and Rj

respectively; Ŝ and ŝ are the Mn and carrier spins. g-tensor describes possible exchange-

coupling anisotropy, which is caused by spin-orbit interaction combined with the quasi-two-

dimensional shape of QDs. In many semiconductors, this anisotropy is almost negligible

for electrons. In contrast, for confined holes, the spin-orbit coupling leads to a strong

anisotropy with “easy axis” along the growth direction z [12]. Thus, Eq. (1) reduces to the

Ising Hamiltonian for the heavy hole ±3/2 pseudospin subspace.
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We focus on a two-carrier QD, the simplest example of a closed-shell system. The total

Hamiltonian, H = Hf + Hex, contains the fermionic part Hf , which employs a typical

two-dimensional (2D) model for two carriers in a QD [13], Hf = −~
2/ (2m∗) (∇2

1 + ∇2
2) +

m∗ω2
0 (r2

1 + r2
2) /2 + e2/ (4πǫr12), where ~ is the Planck constant, m∗ the effective mass, ω0

determines the 2D confinement, e is the electron charge, ǫ the QD’s dielectric constant, and

r12 = |r1 − r2|. The Coulomb interaction is characterized by the effective Rydberg energy

Ry∗ = m∗e4/[32 (πǫ~)2]. We express the two-fermion wavefunction Φ as

Φ =
∑

σ,σ′

ϕσσ′ (r1, r2)χσ (1) ⊗ χσ′ (2) . (2)

Here χσ(1) and χσ(2) are spinors of the carriers 1 and 2, and σ = ±1/2 (or ↑, ↓) corre-

spond to the spin projection along the quantization axis z. The Pauli principle requires

ϕσσ′ (r1, r2) = −ϕσ′σ (r2, r1). Thus, ϕ↑↑ and ϕ↓↓ must be antisymmetric functions of r1 and

r2, while ϕ↑↓(r1, r2) and ϕ↓↑(r2, r1) transform into each other and could be neither sym-

metric nor antisymmetric. To understand the origin of these states, we first consider the

FIG. 1. (color online) Two-fermion states described by the symmetry of the orbital and spin part of

their wavefunctions. Arrows show spin projections (up or down), while radii of the spheres indicate

the extent of orbitals. For the S state, the radii of the orbitals corresponding to spin-up/-down

are the same. For PS, the spin-down orbital is larger, [Eq. (3)], leading to finite spin density and

a magnetically-active state.

“non-magnetic” Hf , spin-independent and invariant under the r1 ↔ r2 interchange. Thus,

its eigenstates are also eigenstates of the total carrier spin, and ϕσσ′ (r1, r2) are either sym-

metric or antisymmetric. The GS of any system of two identical spin-1/2 fermions, described

by a spin-independent Hamiltonian, is a singlet with σ+σ′ = 0 and ϕ↑↓ (r1, r2) = ϕ↑↓ (r2, r1)
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[9, 14]. Excited states are either singlets, or triplets with ϕσσ′ (r1, r2) = −ϕσσ′ (r2, r1). Sym-

metry of the singlet (ground-state) and triplet states is illustrated in Fig. 1.

FIG. 2. (color online) Emergence of magnetic bipolarons in QDs. (a) Without carriers, Mn

spins (light arrows) are randomly oriented. Double arrows in (b, c) show carrier’s spin projection

associated with the orbitals (solid and dashed lines). (b) With 1 carrier, a magnetic polaron forms,

lowering the total energy of the system, due to the coupling of the carrier’s spin with the induced

Mn magnetization. Mn spins align in one direction. (c) Two carriers assemble in a PS state,

forming what we term a magnetic bipolaron. The sign of the Mn-spin projection depends on the

sign of the carrier-spin density (difference between dashed and solid curves). The extent of the

orbitals (length of dotted lines) is different.

The above classification does not fully apply when Hex is included. We first consider a

two-hole system, assuming the Ising exchange, which allows to express any eigenfunction

of H as ψ = Φ ({ri, si} ; {Sjz})
∏

j χ
J (Sjz), where si are the spin variables, Sjz is the spin

projection of j-th impurity, and χJ(Sjz) is an eigenfunction of Ŝjz: Ŝjzχ
J(Sjz) = Sjzχ

J(Sjz),

where Sjz = −J, . . . , J with J = 5/2. This separation of ψ (or “classical approximation”

for Heisenberg spins) is correct to order N
−1/2

Mn , where NMn is the number of Mn spins [15].

It has been widely used in the literature [15, 16]. The separation is exact in the Ising case,

so that approximations, such as the variational method used below, are needed only for the

carrier subspace. The two-hole Φ depends on {Sjz} parametrically, and it is this coupling

that leads to formation of magnetically ordered states. The z-projection of the total carrier

spin, Σ, is a good quantum number, so that the Hilbert space splits into three orthogonal

subspaces with values Σ = σ + σ′ = 0, 1 and −1 [17]. We show that the GS is never a

singlet, i.e., ϕσσ′ (r1, r2) 6= ϕσσ′ (r2, r1). Instead, it is either a triplet (T) with |Σ| = 1, or

what we term a pseudo-singlet (PS), with Σ = 0, which reflects its closed-shell character.

Unlike the typical singlet, PS leads to ordering of the magnetic moments of the open-shell

d-orbitals of Mn, due to breaking of time-reversal symmetry.
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Magnetic polarons form by aligning a “cloud” of Mn-spins by a single carrier localized

in, e.g., a QD or in an impurity potential [15, 18]. The consequences of presence of two

carriers in a magnetic QD are shown in Fig. 2. We predict that, even when the PS is the

GS, a magnetic bipolaron is formed, despite vanishing Σ. The finite exchange interaction is

FIG. 3. Spin corral. Colored surface: the hole-spin density ρPS (arb. units) of PS. Black circle

indicates ρPS (r = R0) = 0. Green arrows: Mn spins, placed at a radius RC , which maximizes

the stability of the ferromagnetic alignment. Red and blue arrows: the more probable hole-spin

projections at two positions. The parameters: ~ω0 = ∆0 = 30 meV, Ry∗ = ~ω0/10, m∗ = 0.5m0,

w = 1 nm [19].

possible due to different Bohr radii of the “up” and “down” orbitals of PS, see the lowest row

of Figs. 1 and 2(c). The non-zero exchange and symmetry breaking is particularly obvious

for Mn spins arranged in a ring (“spin corral” ), Fig. 3. These spins are “ferromagnetically”

ordered, their common direction marks one of the two possible states (Mn spins pointing

either up or down, perpendicular to the QD plane), corresponding to two stable magnetic-

bipolaron solutions separated by an anisotropy barrier. The latter is defined by the strongly

anisotropic hole g-tensor.

To analyze magnetic-bipolaron states and the symmetry breaking induced by Hex, we

approximate the GS of two interacting holes using two alternative trial wavefunctions. The
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first one is the PS (Σ = 0)

ΦPS =
1√
2

[u(r1) d(r2)χ↑ (1) ⊗ χ↓ (2) − u(r2) d(r1)χ↑ (2) ⊗ χ↓ (1)] , (3)

where u, d =
√

2/πL−1
u,d exp

(

−r2/L2
u,d

)

are single-carrier orbitals corresponding spin “up”and

“down” respectively, and Lu,d are the variational parameters. Comparing this with Eq. (2),

we find ϕ↑↓ (r1, r2) = 2−1/2u (r1) d (r2) [20]. The second is a Σ = 1 triplet

ΦT = ϕ↑↑(r1, r2)χ↑(1) ⊗ χ↑(2), (4)

where ϕ↑↑(r1, r2) = −ϕ↑↑(r2, r1) = 2/(πL3
T )×

[

r1e
iφ1 − r2e

iφ2

]

e[−(r2

1
+r2

2)/L2

T] is the orbital

part, in coordinates r, φ, and one variational parameter LT .

The exact treatment of the isotropic g-tensor (for two-electron QDs) requires a large

dimension of the Hilbert space. The problem can be circumvented by replacing the Mn-spin

operators with classical spin vectors [15]. Then, the two PS and two T solutions (Mn spins

pointing up or down, see above), found for holes, form continua (one for PS and one for

T), corresponding to Mn spins aligned along arbitrary directions. Any particular solution

preserves the form given by Eq. (2) [with z-axis parallel to spontaneous magnetization],

and it corresponds to formation of the magnetic bipolaron. The distinct feature of the

isotropic case is lack of an anisotropy barrier between different solutions belonging to the

same continuum.

Owing to the disk-like shape of typical self-assembled and vertical QDs, the z-dependent

Schrödinger equation is factorized out, while the height, h, (along z) of such QDs is usu-

ally small. This allows to assume that only the lowest level of this equation is rele-

vant [21]. Thus, for the PS state [recall Eq. (3)], the matrix element of Hex is Eex =

−Jex/(hN0)
∑

j ρPS (Rj)Sjz, where ρPS (Rj) =
[

|u (Rj)|2 − |d (Rj)|2
]

/2. If Lu 6= Ld, then

Eex 6= 0 in a magnetic QD.

In general: For Hex = 0 (non-magnetic QDs), PS reduces to a singlet for any Ry∗, because

the non-magnetic total energy functional ES reaches a minimum, E0
S, for L0

u = L0
d ≡ L0

S (0

indicates a variational minimum). In all studied systems with Hex 6= 0, however, u0 6= d0,

i.e., PS does not reduce to a singlet. Due to its larger spin density, T may become the GS,

despite its non-magnetic energy being higher than E0
S. (T as the magnetic GS was discussed

by Govorov [3, 22]). The functionals EPS,T reach minima, when Mn spins are antiparallel to

hole-spin density.
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Due to the exchange coupling, Eq. (1), the total energy functional contains a term linear

in the carrier spin density s(r). This term leads to instability of the closed-shell singlet with

s(r) = 0. PS, on the other hand, must satisfy a weaker, integral constraint
∫

s(r)dr = 0.

Thus, any small variation of the wavefunction Φ that promotes a non-zero s(r) ∝ ρPS, while

preserving the integral constraint, leads to the instability of the singlet state, because the

variations of the kinetic and the Coulomb energies contain only second or higher powers of

s(r).

We now describe our results for two particular distributions of Mn spins, starting with

homogeneous Mn content x. Figure 4(a) shows the phase diagram of PS and T. The former

remains the GS for moderate values of Ry∗ and of the saturated Zeeman splitting ∆0 =

Jx |Jex| [23]. We analyze the GS by considering small variations, δ, of the characteristic

lengths from their non-magnetic values L0
S and L0

T,nm. We write Lu,d = L0
S (1 ± δ) for PS,

LT = L0
T,nm (1 + δ) for T, and treat δ as a variational parameter, see Figs. 4(b), (c), and (d).

The quantity ∆EPS(δ) ≡ EPS(δ)−E0
S, plotted in Fig. 4(b), has two minima corresponding to

the two opposite Mn-magnetization profiles mentioned above. The E0
PS −E0

S gap can be an

order of magnitude larger for colloidal QDs with a few nm diameter [24], suggesting stability

of PS at liquid nitrogen temperatures. Figure 4(c) shows that ∆ET(δ) ≡ ET(δ) − E0
T has

δ2 dependence with a single minimum. Unlike PS, the T wavefunction at the variational

minimum is the same as for Hex = 0 (i.e., δ0 = 0), while its energy is lowered by ∆0. Hole

spin densities and Mn-spin profiles corresponding to PS and T are shown in Figs. 4(d) and

(e). The small variation of Φ discussed above is ∝ δ. The singlet-PS instability manifests

itself as the cusp in the solid line in Fig. 4(b).

Results of a full variational calculation [19], [e.g. Fig. 4(a)], confirm the validity of the δ

approximation. By studying the radius at which Mz changes sign, we deduce the magneti-

zation profile for an inhomogeneous x distribution, such that x(r < R0) = 0. Independently

of other details of the inhomogeneous distribution, ρPS has the same sign at all Mn sites,

leading to a ”ferromagnetic” alignment in a large class of QDs. The same alignment arises

when T is the GS. CdSe/(Zn,Mn)Se epitaxial QDs with Mn only at the periphery were

created by intentionally introducing Mn in the material surrounding the dot [2, 25]. The

placing of individual Mn-ions with a scanning tunnelling microscope [26], is a promising path

to realize the “spin-corral”. Additionally, x (r < R0) = 0 could be realized in colloidal QDs,

where radial segregation of impurities occurs during growth [24]. Such systems show strong
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FIG. 4. (color online) (a) Phase diagram of two-hole ground states for homogeneous distribution

of Mn. Horizontally (vertically) hatched area indicates the ranges of Ry∗ and ∆0, for which the

ground state is PS (T). PS reduces to singlet only for ∆0 = 0. (b) for PS, and (c) for T show the

non-magnetic (dashed) and total (solid) energies as a function of δ. (d) and (e) show the hole-spin

densities (at the corresponding variational minima), along any direction in the x − y plane, with

arrows indicating the Mn-spin profiles. The parameters for (b)-(e) are ~ω0 = 30 meV, ∆0 = 3
4
~ω0,

Ry∗ = ~ω0/10, m∗ = 0.5m0. Vertical line in (d): R0 = L0
S/

√
2.

exchange coupling [5], and can be controllably charged [6], thus avoiding fast Auger decay in

type-I QDs with two electron-hole pairs. This decay can also be suppressed using core-shell

colloidal nanocrystals, equivalent to type-II epitaxial QDs, due to electrons-holes separation

[7, 27]. We estimate that for colloidal QDs with ∼ 5 nm diameter [24], the singlet-triplet

splitting can be ∼ 100 meV, resulting in a PS ground state for a wide range of parameters.

PS existence can be also experimentally verified for homogeneous-x QDs, e.g., as a blue

shift of interband photoluminescence with magnetic field, B, applied along the z−axis [11].

With increasing B, all the Mn spins will tend to align antiparallel to it, destroying the PS

magnetization profile, Fig. 4(d). Thus, PS should increase its energy, while evolving towards

the ordinary singlet. This effect could be observed in type-II QDs, where the electrons (unlike

the holes) reside in the barrier and do not modify the physical picture. Strong exchange

coupling in these QDs is seen as magnetic-polaron formation [7].
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Our results can be generalized to closed-shell QDs with more carriers, and to systems,

not described by Hamiltonian Hf , typically used for self-assembled [28], vertical [29], or

lateral [13] QDs. Shells also form for other confinements [1], e.g., colloidal QDs can be

approximately described by spherical or ellipsoidal potential [30]. Closed-shell (Σ = 0)

states appear even for asymmetrical QDs with many carriers [31].

This work was supported by DOE-BES, US ONR, AFOSR-DCT, NSF-ECCS, and CA-
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