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Based on analytic derivations and numerical simulations, we show that near a low resonant fre-
quency, water waves cannot propagate through a periodic array of resonators (bottom-mounted
split tubes) as if water has a negative effective gravitational acceleration ge and positive effective
depth he. This gives rise to a low-frequency resonant bandgap in which water waves can be strongly
reflected by the resonator array. For a damping resonator array, the resonant gap can also dramat-
ically modify the absorption efficiency of water waves. The results provide a mechanism to block
water waves and should find applications in ocean wave energy extraction.

PACS numbers: 47.35.Lf, 92.05.Jn, 47.11.St

Water waves are mechanical waves that propagate
along the interface between water and air and the restor-
ing force is provided by gravity [1]. For a constant water
depth h, the dispersion of linear water waves is given by

ω2 = gk tanh(kh), (1)

where ω is the angular frequency, k ≡ 2π/λ is the
wavenumber, λ is the wavelength, and g is the gravita-
tional acceleration [2]. This dispersion relationship, first
derived by Airy in 1841 [3], is valid for various water
depths and forms the basis of modern hydrodynamics
and ocean engineering [1, 2].
Recently, the interaction of water waves and periodic

structures, such as rippled bottoms and periodic verti-
cal obstacle arrays, has attracted considerable attention
[4–18]. It is found that while the dispersions of water
waves can be strongly modified by periodic structures,
they remain simple in the long-wavelength range [6–14].
In particular, when the wavelength is longer than four-
fold of the periodic length a (λ > 4a), the periodic system
can be viewed as a homogeneous liquid with an effective
gravitational acceleration ge and effective depth he and
thus possesses a simple dispersion

ω2 = geke tanh(kehe), (2)

where ke is the effective wavenumber [15]. The effective
parameters (ge, he) can be different from the values (g, h)
of the water without structures (background), resulting
in a new type of water-wave refraction [16, 17]. However,
the effective parameters have the same positive signs as
those of the background. As a result, long water waves
can propagate through periodic structures [4–18] and this
is a reason why tsunamis are difficult to block by periodic
structures.
In this paper, we show both analytically and numer-

ically that near a resonant frequency, long water waves
cannot propagate through a periodic array of resonators
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FIG. 1. (Color online) Schematic diagrams of a periodic array
of identical, vertical, split rigid tubes standing in water with
constant depth h (a), and a water column pierced by a vertical
split rigid tube, which is surrounded by an effective liquid
(b). The top panels are side views and the bottom panels are
vertical views.

as if the system has a negative effective gravitational ac-
celeration (ge < 0) and positive effective depth. This
gives rise to a low-frequency resonant bandgap in which
water waves are strongly reflected by the resonator array.
Although the results are demonstrated using resonators
of vertical bottom-mounted split tubes, they can be real-
ized by other resonators such as damping buoys for ocean
wave energy conversion [19–23]. For damping resonator
arrays, it is found that the resonant bandgap can dramat-
ically modify the absorption efficiency of water waves.

We consider linear, inviscid, and irrotational water
waves in infinite extent of water of constant depth h,
pierced with bottom-mounted, identical, vertical, split
rigid tubes as shown in Fig. 1(a). The tubes have an
outer radius r1, inner radius r2, total split width ∆, and
are arranged in a square lattice with lattice constant a.
Set r = (x, y) in the horizontal plane and z as the ver-
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FIG. 2. (Color online) (a) Partial water-wave scattering cross-
section of a single, bottom-mounted, split rigid tube. (b)
Effective wavenumber ke and (c) effective gravitational accel-
eration ge for an infinite periodic split-tube array system. (d)
Reflectance for normal incidence of a plane water wave with
wavelength λ upon a five-layer split-tube array. The parame-
ters of the tubes are r1 = 0.36a, r2 = 0.32a, and ∆ = 0.007a.
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FIG. 3. (Color online) The water-wave gap edges of pe-
riodic split-tube arrays as functions of the filling fraction
fs ≡ πr21/a

2. The parameters of the tubes are r1 = 0.36ac,
r2 = 0.32ac, and ∆ = 0.007ac.

tical axis. For harmonic water waves, the vertical dis-
placement of the water surface η is related to a potential

ϕ through η(r, t) =Re
[

− iω
g
ϕ(r)e−iωt

]

. ϕ satisfies the

two-dimensional Helmholtz equation [1],

▽
2ϕ+ k2ϕ = 0, (3)

subjected to a no-flow condition at the surface of each
tube, namely n · ▽ϕ = 0 with n normal to the tube
surface.
We will first derive analytic formulas for the effective

parameters of the periodic system with the coherent-
potential-approximation (CPA) method [15, 24]. We con-
sider a circular water column with radius R = a/

√
π

(so that πr21/
(

πR2
)

equals to the filling fraction fs ≡
πr21/a

2), water depth h, and pierced by a split rigid tube
with radius r, surrounding by the effective liquid with
parameters (ge, he) as shown in Fig. 1(b). Using the
cylindrical coordination (ρ, φ) with the origin at the cen-
ter of the tube, ϕ can be written as

ϕI =
∑

m

[EmJm (kρ) + FmHm (kρ)] eimφ for R ≥ ρ ≥ r1,

ϕII =
∑

m

[AmJm (keρ) +BmHm (keρ)] e
imφ for ρ ≥ R.

Here, the Bessel function Jm and Hankel function Hm

stand for the incident and scattering waves, respectively,
and ke is the wavenumber in the effective liquid. At
the boundary of the water column, the potential ϕ and
flow u▽ϕ should be continuous [ϕI(R) = ϕII(R) and

u∂ϕI(R)
∂ρ

= ue
∂ϕII (R)

∂ρ
] with the reduced depths being [25]

u = [tanh (kh)] /k, ue = [tanh (kehe)] /ke. (4)

It can thus be shown that the water column will not
scatter the zeroth-order and first-order cylindrical waves
(B0, B1 = 0, which defines the effective liquid) when

− ukJ ′

0 (kR)− J0 (kR)T0 (ue, ke, R)

ukH ′

0 (kR)−H0 (kR)T0 (ue, ke, R)
= D0, (5)

− ukJ ′

1 (kR)− J1 (kR)T1 (ue, ke, R)

ukH ′

1 (kR)−H1 (kR)T1 (ue, ke, R)
= D1, (6)

where T0,1 (ue, ke, R) = uekeJ
′

0,1 (keR) /J0,1 (keR),
Dm ≡ Fm/Em is the scattering coefficients of the split
tube. We note that for a single split tube with incidence
of a plane wave, the total scattering and absorption cross-
sections are [26]:

Csct =
2λ

π

∑

m

|Dm|2 ≡ Csct,m,

Cabs =
λ

2π

∑

m

(

1− |2Dm + 1|2
)

.

Using the restriction |2Dm + 1| ≤ 1, one can infer that
the maximal contributions of a single channel to the
scattering and absorption cross-sections are 2λ/π and
λ/ (2π), respectively [27]. Once the scattering coefficients
(D0, D1) are known, the effective parameters (ue, ke) can
be solved numerically from Eqs. (5) and (6), and (ge, he)
can then be obtained by Eqs. (2) and (4).
For long water waves (kR, keR ≪ 1) [25], the effective

parameters (ue, ke) can be obtained by the reduced forms
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of Eqs. (5) and (6):

ke
k

=
√

1 + pD0

√

1 + pD1

1− pD1
,
ue

u
=

1− pD1

1 + pD1
, (7)

where p = 4fs/
(

iπk2r21
)

[25]. For an array of bottom-

mounted rigid cylinders (−D0 ≈ D1 ≈ i
4πk

2r21) [10], we

have ke/k =
√
1 + fs and ue/u = 1−fs

1+fs
, consistent with

our previous derivations [15]. We note that the index
n ≡ ke/k is important for describing the refraction of
water waves by periodic structures [15].
To calculate the scattering coefficients of a bottom-

mounted rigid split tube, we replace the tube wall by its
effective liquid with thickness of (r1 − r2) /nt, wavenum-
ber of ntk, unchanged g, and nt = 2πr1/∆ [28, 29].
This replacement is valid for wavelengths much longer
than the slit width (k∆/4 ≪ 1). For longer wavelengths
(kR, keR ≪ 1) [25], the scattering coefficients can be ex-
pressed as [29],

D0 ≈ i

4
πk4r21/

(

k2R − k (k + iΓ)
)

, D1 ≈ i

4
πk2r21 . (8)

Here Γ represents the loss of the resonance and the reso-
nant wavenumber is given by

kR ≡ 2π/λR =
√

∆/ [πr22 (r1 − r2)]. (9)

We note that Eq. (9) can also be obtained by a spring
(water in the tube) and mass (water in the slits) model.
Consequently, analytic formulas can be obtained for the
effective parameters of the split-tube array system:

ke
k

=

√

(

1 +
fsk2

k2R − k (k + iΓ)

)

1 + fs
1− fs

,
ue

u
=

1− fs
1 + fs

.

(10)
In a wavenumber range above the resonance (kR < k <
k+), ke becomes a complex number giving rise to a band
gap of water wave. Here the upper gap edge is given by

k+ ≡ 2π/λ+ = kR/
√

1− fs. (11)

In Fig. 2, we demonstrate the resonant gap using
split tubes with parameters (r1 = 0.36a, r2 = 0.32a,
∆ = 0.007a). For a single split tube, the scattering
cross-section is found to be maximized at the frequency
(a/λR = 0.11) due to an m = 0 resonance [Fig. 2(a)].
Consequently, the effective wavenumber of the split-tube
array has a nonzero imaginary part in a frequency range
above the resonance (0.111 < a/λ < 0.143) [Fig. 2(b)].
It is interesting to note that in the resonant gap, a nega-
tive effective acceleration of gravity (ge < 0) occurs [Fig.
2(c)] while the effective reduced depth remains positive
(ue = 0.24u).
To verify the resonant gap, we do multiple-scattering

(MS) simulations for impinging of plane water waves
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FIG. 4. (Color online) (a) Total water-wave absorption and
scattering cross-sections of a single, bottom-mounted, split
rigid tube. (b) Absorptance and reflectance for normal im-
pinging of a plane water wave with wavelength λ upon a five-
layer split-tube array. The tubes have the same parameters
as those in Fig. 2. The absorption is introduced by using
Im(k) = 2× 10−3π/a in the split regions. The lines are sim-
ulation results based on Eq. (3).

upon a five-layer split-tube array. We note that the MS
method includes high-order cylindrical waves [10, 18] and
thus can reproduce experimental results well [14, 15]. In
the band gap, water waves are found to be completely
reflected by the structure [Fig. 2(d)]. The lower gap
edge persists at the resonant frequency and the upper
gap edge increases with increasing the filling fraction of
tubes, agreeing well with the analytic results [Fig. 3].
We note that since Eq. (3) also occurs in acoustics, a
similar resonant gap (with a negative effective modulus)
was observed experimentally in acoustic resonator arrays
[30].

By now we have shown that using an array of res-
onators, a resonant gap far below conventional Bragg
gaps (with central wavelengths λ = 2a/L and L being an
integer) can be achieved for water waves. To obtain such
a low-frequency gap, three criteria should be met: (i) the
resonators have either a monopole (m = 0) resonance or
a dipole (m = 1) resonance. When a monopole (dipole)
resonance exists, a negative ge (he) can be achieved in the
gap. (ii) the resonant wavelength is much larger than the
horizontal size of a single resonator. (iii) the filling frac-
tion of resonators is efficiently large (> 0.2). We note
that since the conditions (ii) and (iii) were not met, the
resonant gap has not been discovered in previous studies
on the interaction of water waves and resonators [22, 23].

Damping resonators, such as heaving buoys, can be
applied to extract the ocean wave energy [19–21] and an
array of damping resonators is regarded as a key part of
future ocean wave power plants [22, 23]. Here, we in-
vestigate the influence of the above resonant gap on the
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absorption spectrum of damping resonator arrays. As
a demonstration, we consider damping split tubes with
Im(k) = 2 × 10−3π/a in the split regions. Although a
single split tube has a moderate scattering cross-section
(Csct = 0.47 (2λ/π)) at the resonant frequency [Fig. 4(a),
dashed line], high reflection (> 90%) is still observed in
the gap for a five-layer split-tube array [Fig. 4(b), dashed
line]. Due to the m = 0 resonance, the total absorption
cross-section of a single split tube exhibits a peak at the
resonant frequency [Fig. 4(a), solid line]. However, two
absorption peaks are observed for a five-layer split-tube
array [Fig. 4(b), solid line], indicating a strong modifica-
tion of the density of resonant modes by the gap. Due to
the peak at the upper gap edge, the absorption integrated
over the whole spectrum is not reduced significantly by
the gap.

In summary, we have demonstrated that the long wa-
ter waves propagate through an array of bottom-mounted
split tubes as if water has an effective gravitational accel-
eration ge and effective depth he given by Eqs. (2), (4)
and (10). A low-frequency resonant gap is found where a
negative ge and positive he occur and the propagation of
water waves is forbidden. For a damping resonator array,
the absorption of water waves is found to be greatly en-
hanced at the edges of the resonant gap. Our results pro-
vide a new mechanism for the formation of water-wave
band gaps and should be useful to engineers on ocean
wave energy extraction.
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