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We consider the manifold of all quantum many-body states that can be generated by arbitrary
time-dependent local Hamiltonians in a time that scales polynomially in the system size, and show
that it occupies an exponentially small volume in Hilbert space. This implies that the overwhelming
majority of states in Hilbert space are not physical as they can only be produced after an expo-
nentially long time. We establish this fact by making use of a time-dependent generalization of
the Suzuki-Trotter expansion, followed by a well-known counting argument. This also demonstrates
that a computational model based on arbitrarily rapidly changing Hamiltonians is no more powerful
than the standard quantum circuit model.

PACS numbers:

The Hilbert space of a quantum system is big—its di-
mension grows exponentially with the number of parti-
cles it contains. Thus, parametrizing a generic quantum
state of N particles requires an exponential number of
real parameters. Fortunately, the states of many physical
systems of interest appear to occupy a tiny sub-manifold
of this gigantic space. Indeed, the essential physical fea-
tures of many systems can be explained by variational
states specified with a small number of parameters. Well
known examples include the BCS state for superconduc-
tivity [1], Laughlin’s state for fractional quantum Hall
liquids [2], tensor network states occurring in real-space
renormalization methods [3]. In these cases, the number
of parameters scales only polynomially with N .

In this Letter, we attempt to define the class of physical
states of a many-body quantum system with local Hilbert
spaces of bounded dimensions, and prove that they rep-
resent an exponentially small sub-manifold of the Hilbert
space. We say that a state is physical if it can be reached,
starting in some fiducial state (e.g. a ferromagnetic state,
or the vacuum), by an evolution generated by any time-
dependent quantum many-body Hamiltonian, with the
constraint that 1) the Hamiltonian is local in the sense
that it is the sum of terms each acting on at most k bod-
ies for some constant k independent of N , and 2) the
duration of the evolution scales at most as a polynomial
in the number of particles in the system. The duration
of the evolution has a meaning only if there is a well
defined time or energy scale. We do this by setting the
strength of the local terms in the Hamiltonian to some
constant E. Such bounded interaction strength is cru-
cial to our derivation. The assumption about the initial
fiducial state is artificial; we could alternatively define
the class of physical evolutions for quantum many-body
systems as the ones generated by Hamiltonians obeying
constraints 1 and 2, and would reach the same conclu-

sions.

The second constraint is very much reminiscent of the
way complexity classes are defined in theoretical com-
puter science, where the central object of study is the
scaling of the time required to solve a problem as a func-
tion of its input size. The classical analogue for the prob-
lem that we address is a well known counting argument
of Shannon [4] demonstrating that the number of boolean

functions of N bits scales doubly exponentially (as 22
N

),
with the consequence that no efficient (i.e. polynomial)
algorithm can exist to compute the overwhelming major-
ity of those functions. Indeed, the number of different
functions that can be encoded by all classical circuits of
polynomial depth scale as 2poly(N), which is exponentially
smaller than the total number of Boolean functions.

Our contribution is a quantum generalization of this
result. The crux of our argument is to demonstrate that
the dynamics generated by any local Hamiltonian, with-
out any assumptions on its time-dependence, can be sim-
ulated by a quantum circuit of polynomial size. All previ-
ously known simulation methods [5–10] produced a quan-
tum circuit of complexity that depends on the smooth-
ness of the Hamiltonian, scaling e.g. with ‖∂H/∂t‖ or
some higher derivatives. Using the results of Huyghe-
baert and De Raedt [11], we show how these conditions
can be overcome. We then use a well-known count-
ing argument [12] for quantum circuits that involves the
Solovay-Kitaev theorem [13] to arrive at the conclusion
that most states in the Hilbert space are not physical:
they can only be reached after an exponentially long time.
Note that a direct parameter counting would not pro-
duce this result because we impose no restriction on the
time-dependence of the Hamiltonian. The complete de-
scription of a rapidly changing Hamiltonian requires lots
of information, so from this perspective there are in prin-
ciple enough parameters to reach all states in the Hilbert
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space.

Our demonstration that arbitrary local time-
dependent Hamiltonians can be efficiently simulated on
quantum computers is of interest in its own right in the
context of quantum computation. More precisely, we
are concerned with Hamiltonians acting on N particles
of the form

H(t) =
∑

X⊂{1,2,...,N}

HX(t) (1)

where X labels subsets of the N particles, each term
has bounded norm ‖HX(t)‖ ≤ E, and each term acts on
no more than k particles, i.e., HX(t) = 0 if |X | > k,
and k is fixed, independent of the system size. We
make no assumption on the geometry of the system and
the coupling can be arbitrarily long ranged. The time-
evolution operator U(0, t) from time 0 to t is governed
by Schrödinger’s equation d

dtU(0, t) = −iH(t)U(0, t),
with solution given in terms of a time-ordered integral

U(0, t) = T exp
{

∫ t

0 H(s)ds
}

.

Starting with Feynman’s exploration of quantum com-
puters [15], it has been well established that the time-
evolution operator generated by Hamiltonians of the form
Eq. (1) can be decomposed into short quantum circuits,
provided that H(t) varies slowly enough [5–10]. In all
cases, this is achieved by approximating the evolution
operator by a product formula

U(0, t) ≈
NP
∏

p=1

exp
{

−iHXp
(tp)∆tp

}

, (2)

where the sequences Xp, tp, and ∆tp are set by spe-
cific approximation schemes, such as the Trotter formula
[16] or the Lie-Suzuki-Trotter formula [17]. Because each
term HX acts on at most k particles, this last expression
represents a sequence of k-body unitaries. A standard
quantum circuit is obtained by simulating each of these
k-body operators as a sequence of one- and two-qubit
gates using the result of Solovay-Kitaev [13, 14].

Perhaps the simplest example of a product formula de-
composition of U(0, t) is given by

U(0, t) ≈
n
∏

j=1

∏

X

exp {−iHX(j∆t)∆t} (3)

where the product over X can be carried in any given
order. This decomposition makes use of two approxima-
tions. First, the time-dependence of the H(t) is ignored
on time-scales lower than ∆t: the Hamiltonian is approx-
imated by a piece-wise constant function taking the val-
ues H(j∆t) on the time-interval [(j−1)∆t, j∆t]. Second,
each matrix exponential is decomposed using the Trot-
ter formula exp{−iH(t)∆t} ≈ ∏

X exp{−iHX(t)∆t}.
Clearly, the size ∆t of the time intervals must be shorter

than the fluctuation time-scale of H(t) for the first ap-
proximation to be valid, ∆t ≪ ‖∂H/∂t‖−1. Higher fre-
quency fluctuations would therefore require breaking the
time-evolution into shorter intervals, thus increasing the
overall complexity of the simulation.

Time-dependent Trotter-Suzuki expansion—Somewhat
surprisingly, it is possible to generalize the Trotter-Suzuki
formula to time-dependent Hamiltonians without com-
promising the error, where the Hamiltonian may exhibit
fluctuations much faster than the time step ∆t. We begin
by breaking the total time evolution into short segments
U(0, t) = U(tn, tn + ∆t) . . . U(t2, t2 + ∆t)U(0, 0 + ∆t),
each of duration ∆t

U(tj , tj +∆t) = T exp

(

−i

∫ tj+∆t

tj

ds
∑

X

HX(s)

)

.

In the simple case where the sum over X contains only
two terms, say H1 and H2, it has been shown [11] that
the generalized Trotter-Suzuki expansion

UTS(tj , tj +∆t) = T exp

(

−i

∫ tj+∆t

tj

dsH1(s)

)

×T exp

(

−i

∫ tj+∆t

tj

dsH2(s)

)

gives an error in terms of the operator norm that is

‖U(tj , tj +∆t)− UTS(tj , tj +∆t)‖ ≤ c12(∆t)2,

with c12 of the order of 1 and given by

c12 =
1

(∆t)2

∫ tj+∆t

tj

dv

∫ v

tj

du‖[H1(u), H2(v)]‖.

c12 is upper bounded by c2max/2 with cmax =
maxX ‖HX‖, with ‖HX‖ = sup0≤s≤t ‖HX(s)‖ . Note
that this bound does not depend on the derivative of the
Hamiltonian (and is therefore also valid for non-analytic
time-dependence). Note also that the bound reduces to
the usual Trotter error for the time-independent case and
is therefore equally strong, and that it can straightfor-
wardly be generalized to higher order decompositions.
For our present application, the Hamiltonian is the

sum of L ∈ poly(N) k-particle terms, c.f. Eq. (1). We
can therefore iterate the above procedure log2(L) times;
at the n’th iteration, there are 2n terms, each of strength
upper bounded by cmaxL/2

n. The total error for approx-
imating the exact time-evolution of the Hamiltonian with
L terms by a product of L time-ordered terms is

1

2
c2max(∆t)2

log2 L
∑

m=1

2m
(

L

2m

)2

≤ 1

2
c2maxL

2(∆t)2,

which can be made arbitrary small by choosing a ∆t that
scales as an inverse polynomial in N . Approximating the
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time evolution operator over a total time t with a product
of k-body unitaries, such that the total error is ǫ/2, can
therefore be achieved by choosing

∆t =
ǫ

tc2maxL
2
.

The total number G of k-body unitaries to achieve this
accuracy is then equal to

G(ǫ, L, t) = L
t

∆t
=

c2max

ǫ
t2L3.

The value of each such k-body unitary can be ob-
tained by solving the corresponding finite time-ordered
integral on a classical computer. The Solovay-Kitaev
theorem [13, 14] shows that each of these k-body uni-
tary transformations can be simulated with standard one-
and two-qubit gates chosen from a fixed discrete set (e.g.
CNOT’s between any pair of qubits supplemented by
a local π/8 rotation gate). To achieve an accuracy ǫG
per unitary transformation, we need dSK (logcSK (1/ǫG))
standard gates with cSK and dSK constants; we choose
ǫG such that ǫG = ǫ

2G(ǫ,L,t) . The total number of quan-

tum gates as chosen from a discrete set of gates needed
to approximate the complete time evolution with an
error ǫ is therefore upper bounded by Gtot(ǫ, L, t) =
dSKG(ǫ, L, t) logcSK (G(ǫ, L, t)/ǫ), which is polynomial in
the number of qubits; it roughly scales quadratically in t
and as the cube of the total number of (non-commuting)
local terms in the Hamiltonian.

Average Hamiltonians and randomized evolution—Note
that the time-dependent Trotter-Suzuki decomposition
described in the previous section does not lead to
a product formula because each term appearing in
it involves a time-ordered integral UX(tj , tj + ∆t) =

T exp{−i
∫ tj+∆t

tj
HX(s)ds} rather than the exponen-

tial of a term of the Hamiltonian at a given time
exp{−i∆tHX(t)} as in Eq. (2). Although this does
not affect the conclusions reached in the next section
on the counting of possible quantum states, it is un-
satisfactory from the point of quantum simulation. In
this section, we demonstrate how to recover a prod-
uct formula by making use of randomness. In Ref.
[18], product formula decompositions Eq. (2) were found
for any local Hamiltonian, where the number of terms
NP in the product depends on a smoothness param-
eter ΛP = sup0≤p≤P,0≤s≤t

∑

X(‖∂p
sHX(s)‖)1/(p+1). In

particular, these decompositions are inefficient when the
fluctuation time-scale of the Hamiltonian becomes too
small. Our methods circumvents these requirements by
using randomness. Further, randomization avoids the
complexity of integration.

We do this in two steps. First, we replace the time-
ordered exponential integral with the exponential of an
ordinary integral without introducing a significant error.

Indeed, we show in Appendix A that
∥

∥

∥

∥

∥

T exp

{

−i

∫ tj+∆t

tj

dsHX(s)

}

− exp

{

−i

∫ tj+∆t

tj

dsHX(s)

}∥

∥

∥

∥

∥

≤ 2

3
‖HX‖2∆t2 .

(4)

Using this result, we obtain the approximate decomposi-
tion

U(0, t) ≈
n
∏

j=1

∏

X

exp

{

−i

∫ tj+∆t

tj

HX(s)ds

}

.

Note that this is still not a product formula because it
involves integrals. This first step has nevertheless elimi-
nated the need of a time-order operator.
The second step to obtain a product formula for

U(0, t)—one that does not require any integrals—makes
use of randomness. The average HamiltonianHAv

X,j on the
interval [(j − 1)∆t, j∆t] can be estimated using Monte
Carlo integration. For every j, we can pick m ran-
dom times τkj ∈ [tj , tj + ∆t] and approximate HAv

X,j ≈
1
m

∑m
k=1 HX(τkj ). Because the variance of the Hamilto-

nian is bounded by ‖HX‖2, the sum converges to HAv
X,j

with error estimate ∆t‖HX‖/√m. Using this Monte
Carlo average, we can approximate the evolution oper-
ator of the time interval [tj , tj +∆t] by

UAv
X (tj , tj +∆t) ≈ exp{−i

1

m

m
∑

k=1

HX(τkj )} (5)

≈
m
∏

k=1

exp{−i
∆t

m
HX(τkj )}, (6)

where the order of the product can be chosen according
to increasing values of τkj . The error in the first ap-
proximation Eq. (5) is set by the Monte Carlo estimate
∆t‖HX‖/√m while the second approximation Eq. (6) is
the usual Trotter-Suzuki. Summarizing, we can decom-
pose the total evolution operator from time 0 to t as

U(0, t) ≈
∏

j,k,X

exp{−i
∆t

m
HX(τkj )} ,

where the product should be taken in increasing order
of τkj and any order of X . This is a standard product
formula like Eq. (2)—identical to the usual decomposi-
tion explained in the introduction [Eq. (3)] and the one
presented in [18]—except that the times τkj at which the
Hamiltonian is sampled are random. Thus, we see that
by sampling the Hamiltonian at random times, we com-
pletely circumvent any smoothness requirements.[23]
We note that the proof of Eq. (4) is an illustration

of the decoupling principle that tells us that the high-
frequency fluctuations of the Hamiltonian should not af-
fect the low-energy physics. As a consequence, it is possi-
ble to largely ignore these fluctuations—by replacing the
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time-dependent Hamiltonian by its average value on each
time bin—without significantly modifying the dynamics
of the system. This is the working principle behind renor-
malization group methods of quantum field theory and
quantum many-body physics. The rotating wave approx-
imation [19] and effective Hamiltonian theory [20] are
simple examples illustrating this principle in the case of
time-dependent Hamiltonians.

More generally, we show in Appendix B that we
can replace the time-dependent Hamiltonian H(t) with
a smoothed version H̃(t) with fluctuation time-scale
bounded by σ without significantly affecting the resulting
time-evolution operator. More precisely, we show that
the time-evolution operators from time 0 to t differ by at
most ‖H‖2tσ.

Counting states—Let us now consider the set of all quan-
tum states that can be reached starting from some fidu-
cial state |0〉 and evolving for some polynomial amount
of time under any time-dependent Hamiltonian. A di-
rect counting argument appears difficult because there
are infinitely many distinct time-dependent Hamiltoni-
ans, and therefore there can a priori be infinitely many
states in that set. However, we just established that the
time evolution operator generated by any one of these
Hamiltonian can be well approximated by a polynomial-
size quantum circuit built from a fixed set of M discrete
gates for some constant M .

Thus, to count the number of states that can be pro-
duced by arbitrary time-dependent Hamiltonians, it suf-
fices to count the number of polynomial-size quantum cir-
cuits constructed from a universal discrete set of one- and
two-qubit gates, and to consider an ε-ball around the out-
put of each of these circuits, i.e. the set of states within
a distance ε of the outputs of these circuits. Surely,
the states reached in polynomial time by arbitrary time-
dependent Hamiltonians are contained in the union of
these balls. It is well known [12] that such circuits can
only reach exponentially small subset of states.

Since we limit the evolution to polynomial time, there
exists a constant α such that the total number of gates in
the simulation circuit is bounded by Kα where K ∝ N
is the number of qubits required for the simulation.
There are no more than Ncircuits = (MK2)K

α

distinct
ways of arranging these gates into a quantum circuit
(M possibility for each gate and K2 possible pairs of
qubits between which it can be applied), and therefore
no more than Ncircuits distinct states that can be pro-
duced. On the other hand, the states of K-qubits live
on a (2K+1 − 1)-dimensional hypersphere, whose surface

area is S = 2π2K/Γ(2K), and an ε-ball around a given
state is a (2K+1 − 2)-dimensional hypersphere of volume

V = 2π2K−1ε2
K+1−2/Γ(2K). Combining, we see that the

ε-balls of physical states occupy only an exponentially

small fraction NcircuitsV
S = O(KKǫ2

K

) of the total vol-
ume in Hilbert space. Thus, the overwhelming majority

of states in the Hilbert space of a quantum many-body
system can only be reached after a time scaling exponen-
tially with the number of particles.

Conclusion—We demonstrated that any time-dependent
local Hamiltonian can be simulated efficiently using a
quantum computer, independent of the frequencies in-
volved. As an application, we showed that the set of
quantum states that can be reached from a product
state with a polynomial-time evolution of an arbitrary
time-dependent quantum Hamiltonian is an exponen-
tially small fraction of the Hilbert space. This means
that the vast majority of quantum states in a many-body
system are unphysical, as they cannot be reached in any
reasonable time. As a consequence, all physical states
live on a tiny submanifold, and that manifold can eas-
ily be parameterized by all poly-sized quantum circuits.
Although quantum circuits are unitary and do not di-
rectly simulate imaginary time evolution, the counting
argument we presented holds equally well in this setting,
and hence thermal and ground states of local hamilto-
nians are also efficiently parametrized by short circuits.
This raises the question of whether it makes sense to de-
scribe many-body quantum systems as vectors in a linear
Hilbert space. The recent advances in real-space renor-
malization group methods [3, 21, 22] indeed seem to sug-
gest that a viable approach consists of parameterizing
quantum many-body states using tensor networks and
quantum circuits.
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