
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Complete Reconstruction of the Wave Function of a
Reacting Molecule by Four-Wave Mixing Spectroscopy

David Avisar and David J. Tannor
Phys. Rev. Lett. 106, 170405 — Published 29 April 2011

DOI: 10.1103/PhysRevLett.106.170405

http://dx.doi.org/10.1103/PhysRevLett.106.170405


LU12709

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Complete Reconstruction of the Wavefunction of a Reacting Molecule
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Probing the real time dynamics of a reacting molecule remains one of the central challenges
in chemistry. Here we show how the time-dependent wavefunction of an excited-state reacting
molecule can be completely reconstructed from resonant coherent anti-Stokes Raman spectroscopy.
The method assumes knowledge of the ground potential but not of any excited potential. The excited
state potential can in turn be constructed from the wavefunction. The formulation is general for
polyatomics and applies to bound as well as dissociative excited potentials. We demonstrate the
method on the Li2 molecule.
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For several decades now, femtosecond pump-probe
spectroscopies have been employed to study transition
states of molecules reacting on excited potential surfaces
[1–5]. Although these studies have shed a tremendous
amount of light on excited-state dynamics, none of the
methods in use provides complete information on the
excited-state wavefunction. The need for an experimen-
tal method that will provide this information is com-
pounded by the fact that theoretical ab initio calculations
for excited states are difficult and of limited accuracy.

Several methods have been proposed for reconstructing
excited-state wavefunctions from spectroscopic signals
[6, 7]. These studies, however, assume that one or more
excited-state potentials (or the corresponding vibrational
eigenstates) is known. There have also been various at-
tempts to reconstruct excited-state potentials from spec-
troscopic information [8–12]. However, all these schemes
seem to be based on either a quasi-one-dimensional in-
version procedure or a good initial guess for the desired
potential. Experimental work has focused on wavepacket
interferometry of vibrational wavepackets [13, 14] as well
as electronic Rydberg wavepackets [15, 16].

The approach we present here assumes knowledge of
the ground-state potential but not of any excited poten-
tial. Our strategy is to express the molecular wavefunc-
tion |Ψ(t)〉 as a superposition of the vibrational eigen-
states {|ψg〉} of the ground-state Hamiltonian:

|Ψ(t)〉 =
∑

g

|ψg〉〈ψg|Ψ(t)〉 ≡
∑

g

Cg(t)|ψg〉. (1)

Since the basis {|ψg〉} is assumed known, the challenge is
to find the time-dependent coefficients Cg(t). Note that
in principle the approach is general for polyatomics.

Consider a two-state molecular system within the
Born-Oppenheimer approximation. The nuclear Hamil-
tonians Hg and He correspond, respectively, to the
(known) ground and (unknown) excited potentials. For
simplicity, we consider a δ-pulse excitation as well as
a coordinate-independent electronic transition dipole, µ

(Condon approximation). Applying first-order time-
dependent perturbation theory, the wavepacket that we
want to reconstruct is [17]

|Ψ(t)〉 = −ie−iHet {−µε1} |ψ0〉 ≡ iµε1|ψ(t)〉, (2)

where the initial state, |ψ0〉, is the vibrational ground-
state of Hg with the eigenfrequency ω0, ε1 is the ampli-
tude of the pulse and t is the propagation time on the
excited state. (Here and henceforth we take ~ = 1.) Note
that within a proportionality constant the excited-state
wavepacket |Ψ(t)〉 is equal to |ψ(t)〉 = e−iHet|ψ0〉, the
vibrational ground-state of Hg propagated on He.

Substituting Eq. (2) into the middle expression in
Eq. (1) we obtain Cg(t) = iµε1cg(t) where

cg(t) = 〈ψg|ψ(t)〉 = 〈ψg|e
−iHet|ψ0〉. (3)

Hence, the central quantities required for reconstruct-
ing |Ψ(t)〉 are the overlaps 〈ψg|ψ(t)〉. These over-
laps have a physical interpretation as the projections
of |ψ(t)〉 onto the basis of ground vibrational eigen-
states: as the wavepacket moves on the excited-state
potential its shadow on the ground-state potential is
completely recorded in these time-dependent projections.
The rightmost expression in Eq. (3) indicates that cg(t)
has the form of a time correlation function between
|ψ0〉 and |ψg〉. Such correlation functions appear in the
time-dependent formulation of resonance Raman scatter-
ing (RRS) [18]; however, the experimental RRS signal
involves the absolute-value-squared of the half-Fourier
transform of the correlation function, hence the latter
cannot be recovered from that signal.

Fully resonant coherent anti-Stokes Raman scatter-
ing (CARS) has been shown to be a powerful probe of
ground and excited electronic states properties [19, 20].
In this letter we show that the correlation functions
{cg(t)} may be completely recovered from femtosecond
resonant CARS spectroscopy, allowing complete recon-
struction of the excited-state wavepacket. The formula
for the CARS signal produced by a three-pulse sequence
is P (3)(τ) = 〈ψ(0)(τ)|µ̂|ψ(3)(τ)〉 + c.c. [21], where ψ(3)(τ)
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is the third-order wavefunction and ψ(0)(τ) = e−iHgτψ0.
Within the above assumptions P (3) takes the form

P (3)(τ ) = ε̃〈ψ0|e
−iHeτ43e−i eHgτ32e−iHeτ21 |ψ0〉, (4)

where τij = τi − τj is the (positive) time-delay between
the centers of the ith and jth pulses and τ43 = τ − τ3
with τ being the time of signal measurement. We have
denoted H̃g = Hg − ω0, ε̃ = i3µ4ε1ε2ε3e

iω0(τ21+τ43) with
ε1,2,3 as the first, second and third pulse amplitudes, re-
spectively, and τ ≡ [τ21, τ32, τ43]. In writing P (3)(τ ) as a
complex quantity we have assumed the signal is measured
in a heterodyne fashion.

The physical interpretation of Eq. (4) is illustrated in
Fig. 1: a first laser (‘pump’) pulse creates a wavepacket
that evolves on the excited potential for time τ21. It is
this wavepacket that we wish to reconstruct. A second
(‘dump’) pulse transfers part of this amplitude back to
the ground state, where it evolves for time τ32. Finally, a
third pulse excites part of the second-order amplitude to
the excited state, generating the third-order polarization
that produces the CARS signal, measured after τ43.

FIG. 1: Color online. The pump-dump-pump CARS scheme. Ψ(t)
is the desired wavefunction.

The wavepacket |ψ(t)〉 (Eq. (2)) may be recognized in
the rightmost factors in Eq. (4); the question is how to
extract it. Since to reconstruct |Ψ(t)〉 we need only the
correlation functions 〈ψg|e

−iHet|ψ0〉, the problem reduces
to extracting the latter from Eq. (4). Introducing a com-
plete set of ground vibrational states,

∑
g |ψg〉〈ψg| = 1̂,

into Eq. (4), we obtain the following suggestive formula
for the signal:

P (3)(τ ) = ε̃
∑

g

e−ieωgτ32P (3)
g (τ43, τ21), (5)

where P
(3)
g (τ43, τ21) = 〈ψ0|e

−iHeτ43 |ψg〉〈ψg|e
−iHeτ21 |ψ0〉,

and ω̃g = ωg − ω0. Note that the desired correlation
functions are closely related to the square roots of the

P
(3)
g ’s. Thus, a general strategy for extracting the over-

laps is clear: the signal P (3)(τ ) is Fourier-transformed

along τ32 to resolve the individual P
(3)
g ’s. Then the

square-root of each P
(3)
g is taken to obtain its correspond-

ing cg(t). The {cg(t)} are then used to reconstruct |Ψ(t)〉.
The details of the reconstruction are as follows:

1. Fourier-transform P (3)(τ ) with respect to τ32. The
transformation is designed to resolve P (3)(τ ) into in-

dividual ground-state components, {P
(3)
g } [22]. Using

the Fourier convolution theorem we obtain a sinc-type of
spectrum with peaks at the frequencies ω = ω̃g:

P̃ (3)(τ43, ω, τ21) =
N∑

g=0

S(ω, ω̃g)P
(3)
g (τ43, τ21), (6)

where S(ω, ω̃g) = 2T ε̃ei(ω−eωg)(τ̌32+T )sinc[(ω − ω̃g)T ],
2T = τ̂32 − τ̌32, and τ̌32 (τ̂32) is the minimal (maximal)
value of τ32. Fixing (τ43, τ21), Eq. (6) can be written as
a matrix equation:

P̃
(3) = SP

(3)
g . (7)

2. Invert Eq. (7) to obtain P
(3)
g (τ43, τ21). To do this

we need the matrix S to be square; we therefore choose
the number of frequency elements ω equal to the number

of ω̃g elements and calculate P
(3)
g = S

−1
P̃

(3) [23].

3. Take the square-root of P
(3)
g . Assuming the func-

tions {ψg(x)} are real, we can rewrite P
(3)
g as

P (3)
g (τ43, τ21) = 〈ψg|e

−iHeτ43 |ψ0〉〈ψg|e
−iHeτ21 |ψ0〉. (8)

Taking the square-root of the diagonal of P
(3)
g (τ43, τ21)

(i.e. τ43 = τ21 = t), we recover the {cg(t)} up to a sign:
√
P

(3)
g (t) = ag〈ψg|e

−iHet|ψ0〉 ≡ 〈ψ̃g|e
−iHet|ψ0〉, (9)

where ag = ±1 and the sign of ψ̃g(x) is as yet undeter-
mined. By demanding continuity of the cross-correlation
functions (and their derivatives), the coefficients ag can
be regarded as time-independent. Substituting Eq. (9)
instead of cg(t) into the expression Cg(t) = iµε1cg(t) and
using the resulting Cg(t) in Eq. (1) yields

|Ψ̃(t)〉 = iµε1

N∑

g=0

|ψg〉〈ψ̃g|e
−iHet|ψ0〉. (10)

The different sign combinations of ψ̃g(x) generate 2N

possible superpositions [24]. Only one out of the 2N

|Ψ̃(t)〉 coincides with |Ψ(t)〉: the |Ψ̃(t)〉 for which the

sign combination satisfies
∑

g |ψg〉〈ψ̃g | = 1̂.
4. Discriminating |Ψ(t)〉 from the set {|Ψ̃(t)〉}. The

set of wavefunctions {|Ψ̃(t)〉} are all consistent with the
CARS signal at a specific value of τ43 = τ21 [25]. How-

ever, only one |Ψ̃(t)〉 is consistent with the signal deriva-
tives. To see this, consider the nth derivative of the ex-
perimental signal, Eq. (4), with respect to τ21:

∂nP (3)(τ )

∂τn
21

= ε†〈Ψ∗(τ43)|e
−iHgτ32H̃n

e |Ψ(τ21)〉

= ε†
∑

g,g′

e−iωgτ32Cg(τ43)Cg′ (τ21)H̃
n
e,gg′ , (11)
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where ε† = (−i)n−1µ2ε−1
1 ε2ε3e

iω0τ41 , τ41 = τ − τ1,

H̃n
e = (He − ω0)

n, and H̃n
e,gg′ = 〈ψg|H̃

n
e |ψg′ 〉. Substitut-

ing |Ψ̃(t)〉 instead of |Ψ(t)〉, into Eq. (11) gives

∂nP̃ (3)(τ )

∂τn
21

= ε†
∑

g,g′

e−iωgτ32agag′Cg(τ43)Cg′ (τ21)H̃
n
e,gg′ .

(12)

Accordingly, the |Ψ̃(t)〉 for which ∂n eP (3)(τ)
∂τn

21
= ∂nP (3)(τ)

∂τn

21

for all n, is the reconstruction solution |Ψ(t)〉.
In practice, we proceed as follows. We invert the time-

dependent Schrödinger equation to calculate a set of po-
tentials from each |Ψ̃(t)〉:

≈

V (x) =
1

Ψ̃(x, t)

[
i
∂

∂t
+

1

2m

∂2

∂x2

]
Ψ̃(x, t), (13)

where m is the system’s reduced mass. One can show
that the potentials calculated by the |Ψ̃(t)〉 that do not
coincide with |Ψ(t)〉, are time-dependent [26]. Only

the potential calculated with |Ψ̃(t)〉 = |Ψ(t)〉 is time-
independent and hence corresponds to the excited-state
Hamiltonian He. Thus, in order to find the correct wave-
function we use the set of calculated potentials, as if they
were time-independent, to propagate the corresponding
{|Ψ̃(t)〉} back to time zero. Of all the potentials, only
the truly time-independent one will propagate the corre-
sponding |Ψ̃(t)〉 correctly back to |ψ0〉, and therefore this

|Ψ̃(t)〉 is the correct wavefunction. Note that the above
procedure requires knowing the signal as a function only
of τ32 and τ21 = τ43.

To test our reconstruction methodology, we simulated
the CARS signal by calculating P (3)(τ ) for two sys-
tems. The first is the Li2 molecule, with its ground
(X) and first-excited (A) electronic states as Morse-type
potentials, V (x) = D(1 − e−b(x−x0))2 + T . The second
system, henceforth denoted d-Li2, has the Li2 ground
state (X) but a dissociative excited potential of the form

V (x) = De−b(x−x0) + T (denoted Ã). The potential pa-
rameters are given in [26]. The wavepacket propagations
employed in simulating P (3) were performed using the
split-operator method [27] on a spatial grid of 256 points
in the range of 2–12a.u. with time spacing of 0.1fs. We
used µ = 2a.u. and ε1,2,3 = 10−4a.u. For Li2, we in-

verted Eq. (7) for the first 25 peaks of P̃ 3(ω) producing

25 P
(3)
g functions; for d-Li2 the procedure was performed

for the first 40 peaks, producing 40 P
(3)
g functions.

In Figs. 2 and 3 we present snapshots of the real part
of the reconstructed wavefunction for Li2 and d-Li2, re-
spectively. For Li2 (d-Li2) we superpose the first 25 (40)
eigenfunctions ψg(x) using the {cg(t)} obtained by the

CARS analysis and maintaining
∑

g |ψg〉〈ψ̃g| = 1̂. The
reconstructed wavefunctions are seen to be in excellent
agreement with the exact ones, obtained by direct calcu-
lation of Eq. (2), for all propagation times.

FIG. 2: Color online. Snapshots of the real part of the recon-
structed (circles, red) vs. the exact (dots, blue) wavefunction, at
various times on the excited (A) potential (solid line) of Li2.

FIG. 3: Color online. Snapshots of the real part of the recon-
structed (circles, red) vs. the exact (dots, blue) wavefunction, at

various times on the excited ( eA) potential (solid line) of d-Li2.

Having determined the wavefunctions we calculate
the corresponding excited potential from Eq. (13) us-
ing eight-point (three-point) central finite-differencing for
the time (spatial) derivatives; the time step used was
0.2fs. Time steps of 0.5fs gave very good results as well.
Figures 4 and 5 compare the reconstructed vs. the exact
potentials. The wavefunction (absolute value) used to
calculate the potential is shown by a black solid line.

FIG. 4: Color online. The reconstructed (circles, red) vs. the
exact (dots, blue) A potential of Li2.

To conclude, we have presented a methodology for
the complete reconstruction of the excited-state wave-
function of a reacting molecule by analyzing a multi-
dimensional resonant CARS signal. The methodology
is general for polyatomics and assumes that only the
ground-state potential is known. The approach is very
compelling since the desired excited-state wavefunction
is explicitly contained in the formula for the CARS sig-
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FIG. 5: Color online. The reconstructed (circles, red) vs. the

exact (dots, blue) eA potential of d-Li2.

nal. Highly accurate reconstruction is obtained even
far from the Franck-Condon region. In fact, in practice
the method may be more accurate far from the Franck-
Condon region, since the frequency shift between the
pump and dump pulses will be more effective in dis-
criminating unwanted processes that may contribute to
the measured signal at k = k1 − k2 + k3. We simpli-
fied matters by considering δ-function pulse excitations,
a coordinate-independent transition dipole moment and
only one excited-state potential. In future work we will
test the removal of all these assumptions.

We have shown that once the time-dependent wave-
function is found, the excited potential can be recon-
structed with quite high accuracy. We are currently ap-
plying the method to polyatomics, where obtaining mul-
tidimensional potential surfaces from spectroscopic data
has been one of the longstanding challenges of molecular
spectroscopy. An important application of excited-state
potential reconstruction will be the ab initio simulations
of laser control of chemical bond breaking. Experimen-
tal laser control has been greatly hindered by the lack
of detailed theoretical guidance, which in turn is due to
the lack of accurate excited-state potentials. The present
methodology could have a significant impact in this field
by providing the necessary information about excited-
state potentials.
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