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We consider the ground state of a single “spin-down” impurity atom interacting attractively with
a “spin-up” atomic Fermi gas. By constructing variational wave functions for polarons, molecules
and trimers, we perform a detailed study of the transitions between these dressed bound states as
a function of mass ratio r = m↑/m↓ and interaction strength. Crucially, we find that the presence
of a Fermi sea enhances the stability of the p-wave trimer, which can be viewed as a Fulde-Ferrell-
Larkin-Ovchinnikov (FFLO) molecule that has bound an additional majority atom. For sufficiently
large r, we find that the transitions lie outside the region of phase separation of the imbalanced
Fermi gas and should thus be observable in experiment, unlike the well-studied equal-mass case.

The spin-imbalanced Fermi gas has received much at-
tention recently owing to its elegant realization in ultra-
cold atomic gases. The ability to tune both the inter-
species interaction and the spin polarization has allowed
cold-atom experiments to access the rich phase diagram
of the spin-imbalanced system [1]. However, as experi-
ments become ever more precise, a challenge for theory
is to go beyond conventional mean-field approaches and
accurately determine the existence of exotic phases in the
regime of strong correlations.

One approach that has proven useful at high polariza-
tions is to consider the problem of a single spin-down im-
purity atom immersed in a Fermi gas of spin-up atoms [2–
4]. Such a scenario is just one example of the canonical
“polaron” problem, the solution of which is used to con-
struct the low-energy behaviour of the many-body sys-
tem. Moreover, this limit of full polarization contains
some of the critical points of the full zero-temperature
phase diagram, e.g., it features the tricritical point that
marks the existence of the spatially-homogeneous super-
fluid phase for all polarizations [5]. Thus, an analysis
of the high-polarization limit allows one to characterize
parts of the topology of the whole phase diagram.

An important feature of the single-impurity problem is
that it can exhibit binding transitions where the impu-
rity changes its statistics and/or effective mass for a suffi-
ciently strong attractive interaction. Thus far, the focus
has been on equal masses m↓ = m↑, where it has been
shown that the impurity undergoes a first-order transi-
tion from a polaron (an impurity dressed with particle-
hole excitations) to a molecule (an impurity bound to a
single majority fermion) [4]. Here we demonstrate that a
richer variety of impurity-atom ground states can be ob-
tained when the masses are unequal, with m↓ < m↑. In
this case, the presence of a spin-up Fermi sea can favor a
dressed molecule with nonzero ground-state momentum,
corresponding to the FFLO superfluid phase in the limit
of extreme imbalance. However, we find that the FFLO
molecule usually binds another majority atom to form a
p-wave trimer at zero momentum. Thus, as one increases
the density of majority spins from the limit of zero den-

sity, one finds that the stability of the trimer is initially
enhanced by the Fermi sea.

In this Letter, we map out the ground-state phase dia-
gram for the dressed impurity as a function of mass ratio
r = m↑/m↓ and interaction strength. We also deter-
mine whether or not our dressed-impurity phase diagram
is thermodynamically stable in the highly-imbalanced
Fermi gas, by estimating the onset of phase separation in
this limit using the results of previous quantum Monte
Carlo (QMC) simulations. In contrast to the equal-mass
case, we find that the polaron-trimer binding transitions
sit outside of the phase-separated region and should thus
be experimentally accessible.

In the following, we use the Hamiltonian for a two-
component (we call the two species ↑, ↓) atomic Fermi
gas interacting via a wide Feshbach resonance:

H =
∑

kσ

ǫkσc
†
kσckσ +

g

V

∑

k,k′,q

c†k↑c
†
k′↓ck′+q↓ck−q↑ , (1)

where ǫkσ = k2

2mσ

(we set ~ = 1), V is the system volume
and g is the strength of the attractive contact interaction.
The s-wave scattering length as is then obtained via the
prescription mrV

4πas
= V

g +
∑Λ

k
1

ǫk↑+ǫk↓
, where the ‘reduced

mass’ 2
mr

= 1
m↓

+ 1
m↑

, and Λ is a UV cutoff that can be

sent to infinity at the end of the calculation. Note that
since the ↓ impurity is distinguishable from the ↑ Fermi
sea, our results in the single impurity limit are relevant
to both Fermi gases and Bose-Fermi mixtures.

We construct variational wave functions for the single
impurity atom immersed in a Fermi sea by considering
different numbers of particle and particle-hole pair exci-
tations upon the Fermi sea. Previous studies have shown
this approach to be reasonably accurate [6]. The nov-
elties of our work are to thoroughly explore the case of
unequal masses, to allow the dressed impurity to have
non-zero momentum, and to consider the possibility of
trimers as well as polarons and molecules. We also con-
sidered tetramers at angular momentum L = 1, but they
did not bind anywhere for the parameters we considered.

We adopt the following nomenclature for the different



2

trial wave functions: a subscript n refers to a state with
at most n operators acting on the non-interacting Fermi
sea, and a bracketed momentum refers to the total mo-
mentum of the state. For example, the polaronic state
P3(Q) will contain the impurity atom, and at most one
particle-hole pair on top of the Fermi sea, with a total
momentum Q. In our explicit calculations we concen-
trate on states with at most one particle-hole pair, since
these are known to provide a good approximation for
the impurity energy when m↑ = m↓ [6–9] and going to
higher order greatly increases the numerical effort. Thus,
the wave function for the polaron is [2, 6]:

|P3(Q)〉 = α(Q)c†Q↓|FS〉 +
∑

k,q

β
(Q)
kq c†Q+q−k↓c

†
k↑cq↑|FS〉

where |FS〉 is a Fermi sea of majority atoms, filled up
to momentum kF↑. The presence of a Fermi sea implies
that the spin-up hole momentum |q| ≡ q < kF↑ and the
spin-up particle momentum k satisfies kF↑ < k < Λ.
Likewise, for the molecule, the wave function is [7–9]:

|M4(Q)〉 =
∑

k

γ
(Q)
k c†Q−k↓c

†
k↑|FS〉

+
∑

k,k′,q

δ
(Q)
kk′qc

†
Q+q−k−k′↓c

†
k↑c

†
k′↑cq↑|FS〉 .

Finally, for the trimer, we set Q = 0 and approximate the
wave function as being insensitive to the hole momentum
q by using its value at q = 0 (this approach has been
studied for the polaron [6] and molecule [8, 9], and can
be shown to give an upper bound to the binding energy):

|T5(0)〉 =
∑

k1,k2

τk1k2
c†−k1−k2↓

c†
k1↑

c†
k2↑

|FS〉 +

∑

k1,k2,k,q

ηk1,k2,k,0c
†
q−k1−k2−k↓c

†
k1↑

c†k2↑
c†k↑cq↑|FS〉 .

Here, we set the total angular momentum to be L = 1
and choose Lz = 0, in which case the bare part is τk1k2

=

k̂1 · ẑF (k1, k2, k̂1 · k̂2) − k̂2 · ẑF (k2, k1, k̂1 · k̂2) with any
function F [18]. Unlike the polaron and molecule, which
both have L = 0 in the ground state, we find that this
L = 1 odd-parity trimer is always the lowest energy state
throughout the portion of the {1/kF↑as, r} phase dia-
gram where the trimer is stable. We have not yet ex-
plicitly looked at trimer states with nonzero momentum,
but, as far as we are aware, there is no indication that
the trimer has a lower energy at Q 6= 0.

In the limit kF↑ → 0, this L = 1 trimer becomes the
3-particle bound state in a vacuum, for which analytical
solutions have been found [10]. Here, it has been shown
that the trimer is bound relative to a molecule and an
extra particle for r > rC1

∼= 8.17. However, for r >
rC2

∼= 13.6, the energy of the trimer is no longer finite in
the limit Λ → ∞. This shows up as a wave function with
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FIG. 1: (Color online) The ground-state phase diagram as
a function of mass ratio r and interaction strength 1/kF↑as

for the polaron (P3), molecule (M4) and trimer (T5) wave
functions. The FFLO region corresponds to M4 with non-
zero momentum; the momentum of the FFLO molecule is
approximately kF↑ at the P3-T5-FFLO triple point and goes
continuously to zero at the FFLO-M4(0) transition line, com-
ing in as a square root near the transition. The T5-M4

boundary (full [blue] line) approaches the 3-body transition
rC1 ≃ 8.17 in the limit 1/kF↑as → ∞, as expected. Above the
dashed-dotted (r = rC2) line, the results for T5 become cutoff-
dependent, and are therefore no longer universal. The shaded
region marks where the system is unstable to phase separa-
tion. The dashed (blue) line marks the transition line where a
metastable polaron rapidly binds into a FFLO molecule which
then binds into a trimer.

weight at increasingly high momenta as one approaches
rC2 from below. This critical rC2 is independent of kF↑,
since it relies on high momenta. Thus, the results for the
trimer are always cutoff dependent once r > rC2.

We solve for the ground-state energy of a given nor-
malized wave function |ψ〉 by minimizing the energy
E = 〈ψ|H |ψ〉 with respect to the amplitudes α, β, γ,
δ, τ and/or η. One can generally sum over one of the
momenta and solve a self-consistent equation for the re-
sulting function, where symmetries play a crucial role in
simplifying the calculation. Details of the trimer calcu-
lation, and comments on the accuracy of the results are
in the supplemental information section [18].

By determining the minimum energies of the wave
functions P3(Q), M4(Q), T5(0), we constructed an ap-
proximation to the ground-state phase diagram of the
impurity atom, as depicted in Fig. 1. Here, we find that
the polaron phase always has its lowest energy at zero
momentum. By contrast, a very small region in Fig. 1
exists where the molecule has nonzero momentum in the
ground state. We identify this as FFLO since it can
be shown that a repulsive, dilute gas of these molecules
forms a spatially-modulated condensate [11].

The FFLO state has a very natural interpretation in
this limit: having a molecule with Q = 0 requires the
impurity atom to have momentum k > kF↑, which is
disfavored due to its high kinetic energy as r increases.
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FIG. 2: (Color online) Schematics of two scenarios for a
molecule unbinding into a polaron + particle. The solid (red)
lines represent the molecule dispersion E(Q) and the shaded
regions correspond to the polaron + particle (two-body) con-
tinuum. When both the molecule and polaron have their min-
imum energies at Q = 0 (left), the transition is first-order.
However, we have a continuous transition (where the bound
state fully “mixes” with the continuum) when the molecule
has ground-state momentum Q = kF↑ (right).

However, as r is increased farther, it quickly becomes fa-
vorable for the FFLO molecule to bind another majority
fermion and form a p-wave trimer at zero total momen-
tum. Indeed, at large enough 1/(kF↑as), the transition
is directly from the Q = 0 molecule to the trimer, with-
out any intervening FFLO state. A surprising result is
that as one approaches unitarity, the Fermi surface ac-
tually favors the trimer over the molecule and we have
a direct transition from polaron to trimer. We expect
this to be a robust result since our approximation for T5

underestimates the trimer binding energy.
How are these impurity-atom ground states distinct

from one another? For the polaron, the ground state
wavefunction (including dressing with an arbitrarily large
number of particle-hole pairs) has a nonzero weight Z =
|α(Q)|2 for the “bare” impurity atom. Our approxima-
tions give a positive effective mass m∗ for the polaron,
implying that Z is only nonzero for Q = 0: a polaron
at nonzero Q is unstable to emitting a particle-hole pair
and lowering its momentum. This weight Z is an “order
parameter” for the polaron state.

For the molecule Z = 0, but a fully-dressed ground

state will have a nonzero weight ZM =
∑

k |γ
(Q)
k |2 for the

bare molecule at one or more values of Q. The molecule is
FFLO when this nonzero weight appears at Q > 0. Thus
again we can consider this nonzero ZM , as well as the
momentum Q where it occurs, as the “order parameters”
of the molecule states. Similarly, the trimer phase has
nonzero ZT =

∑

k1k2
|τk1k2

|2 for the bare trimer.
Next, we examine the nature of the binding transitions.

For the case of equal masses, the matrix elements con-
necting the polaron and molecule go to zero at the transi-
tion point due to the transition involving a “decay” into
at least four particles [4]. Thus, one can have a long-lived
molecule (polaron) existing on the polaron (molecule)
side of the transition, with the lifetime Γ−1 ∼ (∆E)−9/2

diverging faster than the inverse of the energy difference
∆E as one approaches the unbinding transition [12]. This

first-order binding transition occurs when the momenta
of the two ground states do not differ by kF↑. For ex-
ample, when the molecule and polaron both have their
minimum energy at Q = 0, for the molecule to decay into
a polaron, it must create two particles and a hole, by mo-
mentum conservation. This 4-particle process leads to a
first-order transition with discontinuous jumps in the or-
der parameters. Referring to Fig. 2, this follows from
the displacement of the molecule dispersion from the po-
laron + particle continuum by kF↑. The same considera-
tions apply to the zero-momentum trimer unbinding into
a zero-momentum molecule plus a particle.

However, if the molecule ground state has Q = kF↑,
then it can unbind in a continuous fashion into either a
Q = 0 polaron plus a particle (see Fig. 2), or a Q = 0
trimer plus a hole. This behaviour shows up in the decay
rates of the excited states on either side of the transition,
which we estimate using a Fermi’s golden rule like in
Ref. [12]. We find that the unbinding of a FFLO molecule
into a trimer or polaron has decay rate Γ ∼ ∆E as ∆E →
0, where, once again, ∆E is the energy difference between
the two phases near the transition. Therefore, this is a
marginal case where the lifetime Γ−1 diverges as fast as
the inverse of ∆E. The decay of a trimer or polaron into
a FFLO molecule is even faster, with Γ being finite as
∆E → 0, since the momentum of the final-state FFLO
molecule can lie anywhere on the Fermi surface and thus
the phase space is enlarged. Finally, the transition from
the zero-momentum molecule to the FFLO molecule is
not an unbinding transition and we find that Q generally
moves continuously away from zero at this transition.

A direct transition from the trimer to the polaron and
vice versa would be first-order, since this is a three-
body decay: the trimer (polaron) “shedding” two par-
ticles (holes). Here the decay rate Γ ∼ (∆E)2 close to
the transition, similar to the behavior of a Fermi liquid
quasiparticle. This implies that a quench at fixed r from
the polaron to trimer phase leads to a metastable polaron
that becomes unstable to forming a FFLO molecule (see
Fig. 1). If the difference between the FFLO and trimer
energies is small here, then there may exist a metastable
FFLO state, a scenario which is worthy of investigation.

In experiments on highly-imbalanced Fermi gases, one
has a nonzero number density n↓ of minority atoms, and
the system must be stable against phase separation in or-
der for the single-impurity transitions to be observable.
For equal masses, QMC predicts that the single-impurity
transition occurs in the phase-separated regime [13], and,
indeed, the experimentally measured disappearance of
the polaron [14] agrees well with the onset of phase sep-
aration between superfluid (SF) and normal (N) phases,
rather than with the polaron-molecule transition for a
single impurity. To estimate the onset of phase sepa-
ration for general mass ratios, we impose the following
coexistence conditions on the pressures P and chemical
potentials µ in each phase: PSF = PN , µSF

σ = µN
σ , and
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µN
↓ = Eb, where Eb is the binding energy of the impu-

rity immersed in the Fermi gas. Fortunately, for mass
ratios r ≥ 1, the superfluid is likely to be unpolarized
(n↑ = n↓) or only weakly polarized at this onset point,
and thus we can exploit the QMC equation of state for
the unpolarized superfluid. At unitarity, this equation of
state has been shown to be relatively insensitive to mass
ratio [15], while in the BCS and BEC limits, the equa-
tion of state is that of a weakly-attractive Fermi gas and
a weakly-repulsive Bose gas, respectively. Thus, we have
pressure and average chemical potential:

PSF =
25/2m

3/2
r

15π2
ε
5/2
F g(1/kFas, r) (2)

µSF ≡
µSF
↑ + µSF

↓

2
= εF f(1/kFas, r) (3)

where the functions g(1/kFas, r) and f(1/kFas, r) are de-
termined via numerical interpolation between the known
limits, while kF = (6π2nSF

↑ )1/3 and εF = k2
F /2mr.

Clearly, the pressure and spin-up chemical potential in
the fully-polarized normal phase are known exactly:

PN =
m

3/2
r

15π2
(1 + r)3/2(µN

↑ )5/2 =
m

3/2
r

15π2

25/2

1 + r
ε
5/2
F↑ (4)

where εF↑ = (kF↑)
2/2mr. To determine µN

↓ , we estimate
the binding energy Eb using the P3 wave function. Note
that at large r, where the polaron is no longer the ground
state, this Eb will be an underestimate, and so the calcu-
lated onset position 1/kF↑as will be lower than the exact
result in this limit. By applying coexistence conditions,
we arrive at the set of equations

(

kF↑

kF

)5

= (1 + r) g(1/kFas, r) (5)

g(1/kFas, r) = (1 + r)3/2

(

f(1/kFas, r)

1 + (1 + r) Eb

εF↑

)5/2

(6)

For equal masses, our calculation gives 1/kF↑as ≃ 0.75,
which agrees well with fixed-node QMC calculations [13].

This onset line determines the region of phase separa-
tion near unitarity and this is plotted in Fig. 1. For suffi-
ciently large r, we see that the polaron-trimer transition
extends well outside of the regime of phase separation,
and thus should be observable in the polarized gas. This
allows one to investigate first-order binding transitions
and the possible metastable states discussed earlier.

A remaining question is what happens to the trimer
phase at a finite density of spin-down atoms. In 1D, it is
known that a trimer phase exists for n↓/n↑ = 1/2, pro-
vided the interactions are sufficiently large [16]. Here, we
expect a Fermi liquid of trimers for n↓/n↑ ≪ 1/2. How-
ever, it is possible that the FFLO phase will eventually
beat the trimer phase as n↓/n↑ is increased. One may

also have a mixture of trimers, polarons and/or molecules
as we approach the single-impurity binding transition.

Experimentally, one can explore our phase diagram us-
ing two atomic species with unequal masses or by artifi-
cially increasing the effective mass of the spin-up atoms
with a spin-dependent optical lattice. 40K-6Li mixtures
are the favored choice, and, in Fig. 1, their mass ratio
(r ≃ 6.7) just touches the bottom parts of the trimer
and FFLO regions. Since each phase has a different ef-
fective mass, one can distinguish between them by deter-
mining the effective mass using the low-lying compression
modes of the gas, as in Ref. [17]. Another possibility is
to directly measure the “order parameter”: Ref. [14] has
successfully measured Z in the polaron phase using RF
spectroscopy, but it remains an open question whether
or not this method can be extended to study ZM or ZT .
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