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Thermal fluctuations tend to destroy long-range phase correlations. Consequently, bosons in a lattice will
undergo a transition from a phase-coherent superfluid as the temperature rises. Contrary to common intuition,
however, we show that non-equilibrium driving can be used to reverse this thermal decoherence. This is pos-
sible because the energy distribution at equilibrium is rarely optimal for the manifestation of a given quantum
property. We demonstrate this in the Bose-Hubbard model by calculating the non-equilibrium spatial correla-
tion function with periodic driving. We show that the non-equilibrium phase boundary between coherent and
incoherent states at finite bath temperatures can be made qualitatively identical to the familiar zero-temperature
phase diagram, and we discuss the experimental manifestation of this phenomenon in cold atoms.

PACS numbers: 64.60.Ht, 03.75.Lm, 03.75.Kk

A system of bosons confined to a lattice has long repre-
sented an alluring opportunity to study the interplay between
two phenomena at the heart of the academic and industrial
interest in many-body quantum mechanics: particle tunnel-
ing and phase coherence. The Bose-Hubbard model (BHM)
describing such systems in the tight-binding approximation
is much richer than its simple mathematical form betrays. It
admits such novelties as dynamic localization [1, 2], photon-
assisted tunneling [3, 4], as well as an archetypal example of
a quantum phase transition between superfluid and insulator-
like states [5, 6]. It is well known that thermal fluctuations
destroy these quantum effects. However it is comparatively
unknown that deliberately driving the system out of equilib-
rium can moderate or reverse entirely the destructive effect of
raising the temperature.

Despite its obscurity, it has been known as far back as the
1960’s that pushing a system out of equilibrium can enhance
its quantum properties. In 1966, Wyatt et. al. [7] showed that
illuminating a microbridge could stimulate its superconduc-
tivity. Eliashberg explained this result in 1970 by calculating
the nonequilibrium quasiparticle distribution induced by the
radiation [8]. Blamire et. al. later demonstrated that super-
conducting transition temperatures could be enhanced in this
manner by several times their equilibrium values [9]. More re-
cently, the idea of non-equilibrium phase transitions has gar-
nered interest in studies of optically trapped atoms [10] and
induced topological structure [11].

The reason for enhancement goes as follows. The quan-
tum properties of a system (e.g. superfluid order param-
eter) depend on the energy distribution of excitations. In
mean-field theory, for instance, they will be related through
a self-consistency equation. It is easily verified that the equi-
librium distribution (obtained by maximizing entropy under
given constraints) is rarely optimal for the enhancement of a
chosen property. A brief survey of the model at equilibrium
reveals this to be the case for the BHM. Indeed, an analogue of
photon-assisted tunneling (PAT) [2, 4] has already been theo-
rized for the BHM at T = 0. However, a fully non-equilibrium

treatment including the effects of temperature (and how they
may be mitigated) is not known to us.

In this Letter, we shall show that harmonically driving a
system of lattice bosons connected to a thermal reservoir can
increase the region in parameter space where the quantum co-
herent phase exists. Even for finite temperatures of the bath,
the phase diagram of the BHM can be made qualitatively iden-
tical to the T = 0 diagram. We shall demonstrate this by defin-
ing non-equilibrium correlation functions 〈a†i (t)a j(t′)〉 within
the Keldysh and Floquet formalisms [12–16]. Divergences of
the real part of this quantity correspond to infinite long-range
correlations. This will define the phase boundary between su-
perfluid and incoherent states for our non-equilibrium system.
We shall find these functions perturbatively [17, 18] in the
small quantity J/U and arrive at a Dyson equation that has
both ordinary and entry-wise (Hadamard) matrix products.
This novel structure will then be solved by column vectoriza-
tion for the stationary non-equilibrium correlation function.

To see how superfluidity may be enhanced by means of a
non-equilibrium pulse, let us briefly review the BHM at equi-
librium. The hamiltonian of the BHM is

H0 + HJ =
1
2

U
∑

i

a†i ai

(
a†i ai − 1

)
− µ

∑
i

a†i ai −
∑

i j

Ji ja
†

i a j,

(1)
where nearest neighbor tunneling of strength Ji j = J is as-
sumed on a 2D square lattice with T � U. This bath temper-
ature models the coupling to an environment [19] that dissi-
pates energy. Let us first consider the T = 0 case where µ/U
is close to some integer M so that µ/U = M ± δ for some
0 < δ < 1/2. Letting the tunneling J be infinitesimally small,
the ground state is a Mott insulator with energy EMott. The
energy gap for adding a particle (+) or hole (−) to a site are
E∓ − EMott = δU and E± − EMott = (1 − δ) U respectively. As
δ is tuned to zero (unity), the state with an extra particle (hole)
becomes degenerate with the Mott insulator state. Thus, even
with arbitrarily small hopping, the kinetic energy (∼ J) gained
for the system by accepting a particle (hole) from the reser-
voir and allowing it to tunnel about the lattice is enough to
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FIG. 1: Phase Diagram: The dotted, solid, and dashed lines are the equilib-
rium phase boundaries with T/U = 0.1, T/U = 0.04, and T/U = 0 respec-
tively.

compensate the insulating gap. These excess particles(holes)
will be free to hop among sites with no energy barrier. At
low temperatures, they will condense producing superfluidity
[6]. As J is increased, the low lying excitations become long-
range collective particle (hole) tunneling events between the
system and reservoir. These events promote particle fluctua-
tions, but they tend to stabilize the phase across sites through
the number-phase conjugate relationship. The manifold where
the energies needed for these long-range excitations vanishes
defines the phase boundary [5] at T = 0.

When T is finite, sites will have a thermal probability
pn = e−βεn of being occupied by n bosons. Sites will have dif-
ferent energies, and their phases will rotate at different rates.
This aggravates the phase fluctuations that destroy superfluid-
ity. As shown in Fig. 1, the region of J vs. µ space that per-
mits superfluidity is reduced (especially near integer values of
µ/U) as the temperature is increased. It requires more energy
to excite a phase coherent tunneling excitation. It is thus nat-
ural to expect a change in the phase diagram when we apply
driving that supplies this energy. We will see that the long-
range phase-coherence demonstrated by our non-equilibrium
correlation functions can be interpreted physically as the arti-
ficial closing of the Mott gap thereby allowing for the excita-
tion of long-range tunneling modes.

To effect an enhancement of superfluidity, we shall need
a perturbation that pushes the system out of equilibrium. A
thermal bath is also necessary both to counterbalance the heat-
ing induced by the perturbation as well as to ensure that the
concept of temperature remains well-defined. We shall add
three terms to the Hamiltonian so that H (t) = H0 + HJ +

Hbath + Hcoup + HV (t). The bath and coupling Hamiltoni-
ans Hbath =

∑
iα εαb†iαbiα and Hcoup =

∑
iα gα

(
b†iα + biα

)
a†i ai

model the coupling of each site to an infinite bath of oscillator
degrees of freedom such as the collective modes of a larger
condensate in the which the lattice is immersed. Since the
only crucial function of the bath is to balance the energy input
from the driving, many types of dissipation are possible and

the results of this paper are likely to extend to these alternate
models. While future work is needed to verify this assertion,
low frequency irradiation of a Josephson array should easily
corroborate or deny this intuition experimentally. We shall
model the strength of our bath coupling [19] by a purely lo-
cal and Ohmic parameter g2

α = ηεα exp {−εα/Λ}. The driving
term that will force a departure from equilibrium is given by

HV (t) = V
∑

i

a†i ai cos (k · xi −Ωt), (2)

In practice, HV (t) describes what is called a Bragg pulse
[10, 20, 21]. In the limit where energy differences between in-
ternal atomic levels are much larger than U, J, and T , the po-
tential in Eq. (2) is created by the superposition of two lasers
offset to each other in both frequency and wave vector. The
spatial dependence of our perturbation is necessary for non-
trivial results because a constant perturbation simply multi-
plies the correlation function by a spatially constant phase fac-
tor [15]. This factor is irrelevant to the tunneling of particles,
and it can be gauged away by a time-dependent transformation
of our operators. The precise form of the spatial dependence
in our system, however, seems not to be very important and
other schemes are certainly possible [2]. We have chosen this
one because of its experimental simplicity.

It is difficult to say much about the nature of the incoher-
ent and coherent phases out of equilibrium. How the phase
transition relates to the equilibrium Kosterlitz-Thouless tran-
sition is also a question for future work. Our focus will be
to determine the boundary between the two non-equilibrium
phases. To do this we shall approximate the correlation func-
tion 〈a†i (t)a j(t′)〉 and look for divergences of this quantity over
long distances. We shall do this perturbatively in the small
quantity J/U following the general method in [17, 18]. Antic-
ipating a nonequilibrium formalism and considering only the
first order in the self-energy, the correlation function can be
written as an infinite sum of simple chain diagrams defined on
the foward-backward Keldysh contour, C. The evolution on C
is important in nonequilibrium problems because it dispenses
with the need to know the state of the system at t = ∞ for the
calculation of expectation values. The contour-time-ordering
is accounted for by allowing green’s functions to have a matrix

structure [12, 14]. That is, if we define Ĝ =

(
GA 0
GK GR

)
where

A,K,R refer to advanced, Keldysh, and retarded Green’s func-
tions, then the non-equilibrium Dyson series can be written as
a sum of matrix products of correlation functions.

Ĝi j
(
t, t′

)
= ĝi j

(
t, t′

)
−

∑
i1i′1

Ji1i′1

∫ ∞

−∞

dt1 ĝii′1 (t, t1) Ĝi1 j
(
t1, t′

)
,

(3)
where ĝi j refers to the correlation functions with respect to
the hamiltonians H0 + Hbath + Hcoup + HV (t) at bath tem-
perature T . Because these hamiltonians are just sums of
single-site terms proportional to products of density oper-
ators ni = a†i ai, they are easy to diagonalize in the oc-
cupation basis. Additionally, the bath can be decoupled
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from the system [14, 19] via a canonical transformation
ai → eS aie−S = aie

∑
α
gα
εα

(
b†iα−biα

)
= aiXi that uses the time-

derivatives of the transformed fields to cancel the coupling
to the bath. Averages of the form 〈Tca†i (t) a j (t′)〉 simply
transform to 〈Tca†i (t) a j (t′)〉〈TcX†i (t) X j (t′)〉 = ĝi j (t − t′) ◦
f̂i j (t − t′) where ◦ denotes a Hadamard or entrywise prod-
uct given by

(
Â ◦ B̂

)
αβ

= AαβBαβ where α,β designate com-
ponents in the 2 × 2 Keldysh space. The inclusion of
the driving field HV (t) produces a simple phase factor [15]
equal to ei V

Ω
[sin(k·xi−Ωt)−sin(k·xi−Ωt′)]. We conclude that the non-

equilibrium function ĝi j is a product of the time-dependent
factors produced by Hbath+Hcoup+HV (t) and the bare function
with respect to H0. Expanding the non-equilibrium prefactor
in terms of Bessel functions, the exact expression for ĝi j is

ĝi j
(
t, t′

)
= ĝbare

i j
(
t − t′

)
◦ f̂

(
t − t′

)
(4)

×

∞∑
mn=−∞

(−1)m+nJn

(V
Ω

)
Jm

(
−

V
Ω

)
ei[nΩt+mΩt′−(n+m)k·xi],

The functions f̂ and ĝbare
i j are 2 × 2 matrices of the equilib-

rium correlation functions for the bath and the system given
by H0 respectively. As they are equilibrium functions, they
depend only on the difference of their time-arguments. All
of the non-equilibrium information is stored in the expansion
of the phase prefactor which depends on t and t′ separately.
This is the source of the J0

(
V
Ω

)
dependence of the tunneling

renormalization familiar from studies of dynamic localization
[2].

The non-equilibrium phase factor makes Ĝi j a function of
τ = (t + t′) /2 rather than simply of ∆ = t−t′. However, due to
the time-periodicity of Eq. (2), Ĝi j (τ,∆) is a function of τ only
up to period 2π/Ω. This discrete time symmetry of the Hamil-
tonian allows us to decompose every matrix function in Eq. (3)
as Ĝi j (t, t′) = 1

2π
∑

N eiNΩτ
∫ ∞
−∞

e−iω∆Ĝi j (ω,N). Following the
technique illustrated in [15], equation (3) can now be written
in terms of the functions ĝi j (ω,N), but it will be burdensome
to work with it because the equation for Ĝi j (ω,N) will include
contributions from Ĝi j (ω,N′) for all N′. Fortunately, we can
mathematically represent this coupling as simple matrix mul-
tiplication if we transform to the so-called Floquet represen-
tation [15, 16] defined as Ĝi j (ω)mn = Ĝi j

(
ω + m+n

2 Ω,m − n
)
.

We may now think of Ĝi j (ω)mn as an infinite square matrix in
the two-dimensional space of Floquet indices m and n. Each
element of this matrix is itself a 2×2 Keldysh matrix. We will
suppress the site indices and make use of the discrete trans-
lational symmetry of the problem by transforming to lattice-
momentum space Ĝi (ω,q)mn =

∑
j eiqi·(x j−xi)Ĝi j (ω)mn. Fi-

nally, we explicitly account for the plane-wave contribution
to the full Green’s function by defining ei(n−m)ki·xiĜ (ω,q)mn =

Ĝi (ω,q)mn. Having made these transformations, we arrive at
an extremely simple form for the nonequilibrium Dyson equa-
tion.

Ĝ (ω,q) = ĝ (ω)
[
1 − J (q,k) ◦ Ĝ (ω,q)

]
, (5)

where for given matrices A and B in the Floquet space
(indexed by m, n), AB indicates an ordinary matrix prod-
uct while A ◦ B denotes a Hadamard in the Floquet space
rather than Keldysh space. The matrix J (q,k) is a general-
ized lattice dispersion in Floquet space given by Jmn (q) =

J
∑
ν cos

[
qν + (m − n) kν

]
where ν = 1, 2 denotes principle di-

rections in our square lattice.
The existence of a Hadamard product in Eq. (5) complicates

matters. We cannot merely multiply by inverses to solve for
Ĝ because there are now two types of inverses corresponding
to the two types of products. This double-product structure
in a Dyson equation seems so far unknown in any other con-
text, but the situation can be salvaged by column vectoriza-
tion (CV): the mapping of matrix A to a vector ~A consisting
of the first column of A stacked on the next column and so
on. We can then make use of the convenient identities relating
Hadamard and ordinary matrix products through CV to solve
Eq. (5) and rewrite it as

~G (ω,q) =
(
1n2

p×n2
p −

[
1np×np ⊗ ĝ (ω)

]
D

{
~J (q)

})−1
~g (ω) , (6)

where ⊗ indicates a Kronecker product, and D
{
~A
}

denotes the

diagonal matrix with entries given by those of ~A. The iden-
tity matrix of size k × k is given by 1k×k, while np is the size
of the matrix ĝ in the Floqet (m, n) space. It signifies how
many higher harmonics we wish to include, or equivalently,
the maximum time-resolution of our treatment. If we needed
infinite time-resolution, we would of course let np → ∞.
However, each off-diagonal element (m, n) will be weighted
by (J/U)m−n while ĝmn → 0 with increasing m + n, so we ex-
pect that np need not be large to capture the relevant stationary
behavior.

To determine the phase boundary, we are only interested in
the stationary behavior of the system given by Ĝ00. Invert-
ing the block-diagonal n2

p × n2
p matrix in Eq. (6), the real part

of the Keldysh component of our correlation function, ReGK
00,

can be displayed. Fig. 2(a) shows the system at equilibrium
(V = 0) including the effects of Ohmic dissipation. The phase
boundary is given by the points where ReGK

00 diverges, and
our results match those of Ref. [19]. Fig. 2(b) is an example
of dynamic enhancement of superfluidity. Note the similarity
of Fig. 2(b) to the T = 0 phase diagram at equilibrium. In
Fig. 2(c), we see the effect of making the pulse energy ~Ω ten
times smaller. Again there is superfluid enhancement, but no-
tice that the valleys come to much finer points closer to the
µ/U axis. This advocates an interpretation wherein our per-
turbation excites phase-stabilizing collective modes and arti-
ficially closes the energy gap. A smaller perturbation energy
~Ω is resonant with a smaller gap. Thus, the phase boundary
is much closer to the µ/U axis at integer values of µ/U where
the gap goes to zero. It becomes qualitatively identical to the
T = 0 equilibrium phase diagram.

The system’s behavior in other regions of V,Ω space are
catalogued in Fig. 3. For instance, at high frequencies (~Ω �
U), we see the familiar phenomenon of dynamic localization
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FIG. 2: Numerical density plots of ReGK
00 for bath temperature βU = 25,

coupling width Λ/U = 3, and strength η = 0.01. (a) Equilibrium: V = 0.
(b) Superfluid enhancement: V/U = 0.1, ~Ω/U = 0.05, k = π

a x, np = 5. (c)
Superfluid enhancement: V/U = 0.1, ~Ω/U = 0.005, k = π

a x, np = 5. Note
the similarity to the T = 0 equilibrium diagram.

[1, 2]. All Wigner components other than N = 0 can be ig-
nored, and the tunneling is renormalized J → JJ0 (V/Ω) by
the zeroth Bessel function of the first kind coming from the
expansion of the non-equilibrium phase factor in Eq. (5). If
V/Ω is tuned to a zero of J0 (x), we have dynamic suppres-
sion of tunneling. We find a featureless phase diagram (not
shown in Fig. 3) because there is no region of J vs. µ space
that admits long-range phase-coherence.

This phenomenon, familiar from driven Josephson arrays,
can be understood as a cancellation of the dynamic phase ac-
quired by a particle due to one period of driving with the phase
resulting from hopping between sites. The bosons become lo-
calized with no long-range correlations. That is, ReGK

00 di-
verges nowhere. If we now tune V toward zero, the phase
boundary returns to its equilibrium form. However, if instead
Ω is tuned lower, it will eventually be small enough to be res-
onant with the low energy collective modes available when
µ/U is close to an integer. Close to this valley, we will again
have dynamic enhancement of superfluidity. However, further
from the valley, there will be no available low-energy modes,
and we will see suppression of tunneling. The result is larger
Mott lobes that almost touch the µ/U axis.

We have demonstrated the enhancement of the superfluid
region in parameter space by driving. The experimental sig-
nature of this effect is similar to what has been found in time-
of-flight experiments [22]. When µ and J are tuned to a point
within the enhanced superfluid region close to integer values
of µ/U, there will be well-defined peaks in momentum space
when the perturbation is on (V , 0) and a featureless inter-
ference pattern corresponding to destroyed phase coherence
when the perturbation is off (V = 0). Consistent with this un-
derstanding, we expect that driving will continue to be found
a practical way to moderate decoherence in quantum systems.
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FIG. 3: The T = 0.04U equilibrium phase boundary (dotted line) plotted
with examples from different regions of driving parameter space.
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