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Quantum evaporation of Callan-Giddings-Harvey-Strominger (CGHS) black holes is analyzed in the mean

field approximation. This semi-classical theory incorporates back reaction. Detailed analytical and numerical

calculations show that, while some of the assumptions underlying the standard evaporation paradigm are borne

out, several are not. Furthermore, if the black hole is initially macroscopic, the evaporation process exhibits

remarkable universal properties (which are distinct from the features observed in the simplified, exactly solu-

ble models). Although the literature on CGHS black holes is quite rich, these features had escaped previous

analyses, in part because of lack of required numerical precision, and in part because certain properties and

symmetries of the model were not fully recognized. Finally, our results provide support for the full quantum

scenario recently developed by Ashtekar, Taveras and Varadarajan.

PACS numbers: 04.70.Dy, 04.60.-m,04.62.+v,04.60.Pp

I. Introduction. Since the early nineties, a number of 2-

dimensional (2D) black hole models have been studied to gain

further insight into the quantum dynamics of black hole evap-

oration. Physically, the most interesting among them is due to

Callan-Giddings-Harvey-Strominger (CGHS) [1]. Simplified

versions of this model are exactly soluble but also have im-

portant limitations discussed, e.g., in [2, 3]. Therefore results

obtained in those models are not reliable indicators of what

happens in the full CGHS dynamics. In this letter we present

key results from a new analysis of CGHS black holes using

a mean-field or semi-classical approximation. These findings

are surprising in two respects. First, several features of the

standard CGHS paradigm [2] of quantum evaporation are not

realized. Second, black holes resulting from a prompt collapse

of a large Arnowitt-Deser-Misner (ADM) mass exhibit rather

remarkable behavior: after an initial transient phase, dynam-

ics of various physically interesting quantities at right future

null infinity I+
R flow to universal curves, independent of the

details of the initial collapsing matter distribution. This uni-

versality strongly suggests that information in the collapsing

matter on I−

R can not in general be recovered at I+
R . How-

ever, we also find strong evidence supporting the scenario of

[4] in which the S-matrix from (left past infinity) I−

L to I+
R

is unitary. This distinction between unitarity and information

recovery is a peculiarity of 2D.

In this letter we summarize the main results. An extensive

treatment can be found in [5]; details of the numerics in [6];

and a thorough investigation of the full quantum issues in [7].

II. Model. In the CGHS model, geometry is encoded in a

physical metric g and a dilaton field φ, and coupled to N
massless scalar fields fi. Since we are in 2D with R

2 topology,

we can fix a fiducial flat metric η and write g as gab = Ωηab.

Then it is convenient to describe geometry through Φ := e−2φ

and Θ := Ω−1Φ. The model has 2 constants, κ with dimen-

sions [L]−1 and G with dimensions [ML]−1.

Our investigation is carried out within the mean field ap-

proximation (MFA) of [4, 7] in which one ignores quantum

fluctuations of geometry but not of matter. To ensure a suffi-

ciently large domain of validity, we must have large N and

we assume that each scalar field fi has the same profile.
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Figure 1. A Penrose diagram of an evaporating CGHS black hole in

the mean field approximation (MFA). The incoming state is the vac-

uum on I
−

L , and left moving matter distribution on I
−

R . The collapse

creates a generalized dynamical horizon (GDH), which subsequently

evaporates. Quantum radiation fills the spacetime to the causal future

of matter. Inside the GDH, a singularity forms in the geometry. It

meets the GDH when the latter shrinks to zero area. The “last ray”

emanating from this meeting point is a future Cauchy horizon.

Black hole formation and evaporation is described entirely in

terms of non-linear partial differential equations. Denote by

z± the advanced and retarded null coordinates of η so that

ηab = 2∂(az
+ ∂b)z

−. We will set ∂± ≡ ∂/∂z±. Then we

have the evolution equations

�(η) fi = 0 ⇔ �(g)fi = 0. (1)

for matter fields, and

∂+ ∂− Φ + κ2Θ = G 〈T̂+−〉 ≡ N̄G~ ∂+ ∂− ln(ΦΘ−1)

Φ∂+ ∂−ln Θ = −G 〈T̂+−〉 ≡ −N̄G~ ∂+ ∂− ln(ΦΘ−1)(2)

for geometric fields Θ, Φ. The terms on the right side are

quantum corrections to the classical equations due to confor-

mal anomaly and encode the back reaction of quantum radi-

ation. As in 4D general relativity there are constraints which

are preserved by the evolution equations:

−∂2
− Φ + ∂− Φ∂− ln Θ = G 〈T̂−−〉

−∂2
+ Φ + ∂+ Φ∂+ ln Θ = G 〈T̂++〉 . (3)
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Here, N̄ := N/24 and 〈T̂ab〉 denotes the expectation value of

the stress-energy tensor of the N fields fi.

We solve this system of equations as follows. As is stan-

dard in the CGHS literature, we assume that prior to z+ = 0
the space-time is given by the classical vacuum solution and

matter falls in from I−

R after that (see Fig. 1). Therefore, to

specify consistent initial data, it suffices to choose a matter

profile f+(z+) on I−

R , and solve for the initial (Θ, Φ) us-

ing (3). We then evolve (Θ, Φ) to the future of the initial data

surfaces using (2). Trivially, fi(z
+, z−) = f+(z+) from (1).

We now discuss the interpretation of solutions via horizons,

singularities and the Bondi mass. Note first that in analogous

4-dimensional (4D) spherically symmetric reductions, Φ is re-

lated to the radius r by Φ = κ2r2 [2, 5]. Therefore, a point in

the CGHS space-time (M, g) is said to be future marginally

trapped if ∂+Φ vanishes and ∂−Φ is negative there [2, 8].

The quantum corrected “area” of a trapped point is given by

a := (Φ−2N̄G~). The world-line of these marginally trapped

points forms a generalized dynamical horizon (GDH). As time

evolves, this area shrinks because of quantum radiation , and

finally goes to zero. The MFA equations are formally singular

where Φ = 2N̄G~; thus at the end-point of evaporation the

GDH meets a space-like singularity. The ‘last ray’ —the null

geodesic from this point to I+
R — is the future Cauchy horizon

of the semi-classical space-time. See Fig. 1.

We assume (and this is borne out by the simulations) that

the semi-classical space-time is asymptotically flat at I+
R in

the sense that, as z+ → ∞, the field Φ has the following

behavior along z− = const lines

Φ = A(z−) eκz+

+ B(z−) + O(e−κz+

), (4)

where A and B are smooth functions of z−. A similar ex-

pansion holds for Θ. The physical semi-classical metric gab

admits an asymptotic time translation ta. Its affine parame-

ter y− is given by e−κy− = A(z−). Up to an additive con-

stant, y− serves as the unique physical time parameter at I+
R .

The MFA equations imply that there is a balance law at I+
R

[4, 7], motivating new definitions of a Bondi mass MATV
Bondi

and a manifestly positive energy flux FATV:

MATV
Bondi =

dB

dy−
+ κB + N̄~G

(d2y−

dz−2
(
dy−

dz−
)−2

)

(5)

FATV =
N̄~G

2

[d2y−

dz−2
(
dy−

dz−
)−2

]2
, (6)

so that d(MATV
Bondi)/dy− = −FATV. In the classical theory

(~ = 0), there is no energy flux at I+
R , and MATV

Bondi reduces

to the standard Bondi mass formula, which includes only the

first two terms in (5). Previous literature [1, 2, 8–10] on the

CGHS model used this classical expression also in the semi-

classical theory. But we will see that this traditionally used

Bondi mass, MTrad
Bondi, is physically unsatisfactory.

III. Scaling and the Planck Regime. It turns out that the

mean field theory admits a scaling symmetry. To express it

explicitly, let us fix z± and regard all fields as functions of

z±. Then, given any solution (Θ, Φ, N, f+) to all the field

equations and a positive number λ, (λΘ, λΦ, λN, f+) is also

a solution (once z− is shifted to z−+(lnλ)/κ) [5, 12]. Under

this transformation, we have

gab → gab, (M, FATV,aGDH) → λ(M, FATV,aGDH)

where aGDH denotes the area of the GDH, and M is either the

Bondi mass MATV
Bondi or the ADM mass MADM. This symme-

try implies that, as far as space-time geometry and energetics

are concerned, only the ratio M/N matters. Thus, whether

a black hole is ‘macroscopic’ or ‘Planck size’ depends on the

ratios M/N and aGDH/N rather than on the values of M or

aGDH themselves. Hence we are led to define

(M⋆, M⋆
Bondi, F

⋆) = (MADM, MATV
Bondi, F

ATV)/N̄ ,

and m⋆ = M⋆
Bondi|last ray . (7)

To compare these quantities to the Planck scale, note that there

are subtleties as G~ is dimensionless in 2D; careful consider-

ations lead us to set M2
Pl = ~κ2/G, and τ2

Pl = G~/κ2 [5].

We can regard a black hole as macroscopic if its evaporation

time is much larger than the Planck time. Using the fact that,

in the external field approximation, the energy flux is given by

FHaw = (N̄~κ2/2), this condition leads us to say that a black

hole is macroscopic if M⋆ ≫ G~ MPl. Note that the relevant

quantity is M⋆ rather than M . The precise nature of this scal-

ing property was not appreciated until recently. For example,

in [13] it was noted that N could be “scaled out” of the prob-

lem and that the results are “qualitatively independent of N”,

whereas in fact for a given M they can vary significantly as

N changes. Similarly, the condition that a macroscopic black

hole should have large M/N appears in [9]. But it was arrived

at by physical considerations involving static solutions rather

than an exact scaling property of the full equations.

IV. Results. Here we describe some key results from numer-

ical solution of the CGHS equations (1)-(2). We consider

two families of initial data, most conveniently described in

a “Kruskal-like” coordinate κx+ = eκz+

. The first is a col-

lapsing shell used extensively in the CGHS literature,

(

∂f+/∂x+
)2

=
M⋆

12
δ
(

x+ − 1/κ
)

, (8)

parameterized by M⋆. The other is a smooth (f+(x+) is C4),

two parameter (M̃⋆, w) profile defined by

∫ x+

0
dx̄+ ( ∂f+

∂x̄+ )2 = M̃⋆

12

(

1 − e(κx+
−1)

2
/w2

)4

θ(x+ − 1/κ),

(9)

where θ is the unit step function, w characterizes the width of

the matter distribution, and M̃⋆ is related to the ADM mass

via M⋆ ≈ M̃⋆(1+1.39 w). Unraveling of the unforeseen be-

havior required high precision numerics [6], which is crucial

in the macroscopic mass limit that is of primary importance.

Numerical solutions from both classes of initial data were ob-

tained for a range of masses M⋆ from 2−10 to 16, a range of

widths from w = 0 to w = 4, and N̄ varying from 0.5 to

1000. Since we are primarily interested in black holes which

are initially macroscopic, here we will focus on M⋆ ≥ 1 and,

since the computations did bear out the scaling behavior, on

the case N̄ = 1. We set ~= G=κ=1.
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Figure 2. The final mass m⋆ versus the initial mass M⋆ (7) for a

variety of initial data (8-9). The curve fit to the data is m⋆ = α (1 −

e−β(M⋆)γ

), with α ≈ 0.864, β ≈ 1.42, and γ ≈ 1.15.

Our numerical simulations show that, as expected, the

semi-classical space-time is asymptotically flat at I+
R but, in

contrast to the classical theory, I+
R is incomplete, i.e., y− has

a finite value at the last ray. However, dynamics also exhibits

some surprising features which can be summarized as follows.

First, the traditionally used Bondi mass MTrad
Bondi can become

negative and large even when the GDH is macroscopic. For

CGHS black holes, negative MTrad
Bondi was known to occur [11]

but only for black holes which are of Planck size even before

evaporation begins. For initially macroscopic black holes, the

standard paradigm assumed that MTrad
Bondi is positive and tends

to zero as the GDH shrinks (so that one can attach a ‘flat cor-

ner’ of Minkowski space to the future of the last ray). Second,

while the improved Bondi mass, MATV
Bondi, does remain positive

throughout evolution, at the last ray it can be large. In fact

this ‘end state’ exhibits a universality shown in Fig 2 where

m⋆, the final value of (M⋆
Bondi), is plotted against the rescaled

ADM mass M⋆ for a range of initial data. It is clear from the

plot that there is a qualitative difference between M⋆ & 4 and

M⋆ . 4. In the first case the value of the end point Bondi

mass is universal, m⋆ ≈ 0.864. For M⋆ < 4 on the other

hand, the value of m⋆ depends sensitively on M⋆. Thus in the

MFA it is natural to regard CGHS black holes with M⋆ & 4
as macroscopic, and those with M⋆ . 4 as microscopic. Nu-

merical studies have been used in the past to clarify proper-

ties of the CGHS model [3, 10, 11, 13], such as dynamics of

the GDH. However, they could not uncover universal behavior

because, in the present terminology, they covered only micro-

scopic cases (M⋆ ≤ 2.5 in all prior studies).

Third, for macroscopic (M⋆ & 4) black holes that form

promptly, after early transient behavior, dynamics of physical

quantities at the GDH and at I+
R approach universal curves.

By promptly, we mean the characteristic width of the ingo-

ing pulse is less than that of the initial GDH (more precisely,

w/M⋆ . 0.1). This is most clearly demonstrated in the be-

havior of the flux F ⋆, or equivalently the Bondi mass M⋆
Bondi,

measured at I+
R . An appropriately shifted affine parameter

y−

sh = y− + const provides an invariantly defined time coor-

dinate and Fig. 3 shows the universality of evolution of F ⋆ and

M⋆
Bondi with respect to it. The shift aligns the y− coordinates

amongst the solutions, which we are free to do as y− is only

uniquely defined to within a (physically irrelevant) additive

constant. Finally, note that this universality is qualitatively
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Figure 3. F ⋆ and M⋆
Bondi of Eq (7) plotted against y−sh for solutions

with several values of parameters M⋆ and w of Eqs (8)-(9). In all

cases F ⋆ starts at 0 in the distant past (κy−sh ≪ −1), and then joins

a universal curve at a time that depends on the initial mass. The

time when the dynamical horizon first forms is marked on each flux

curve (which is later for larger w, though note that the mass and

flux curves for all the M⋆ = 6 cases are indistinguishable in the

figure). We have not yet found an extrapolation of the flux to the

last ray y−sh = 0 that conclusively answers whether it is finite there.

However, all functions we tried that fit the data well have a finite

integrated flux. Moreover, when the flux starts rising rapidly, we are

still well within the regime where the numerical solution converges,

and we can follow the solution clearly into a regime where the mass

has reached its final value of m⋆
≈ 0.864.

different from the known uniqueness results for solutions of

certain simplified soluble models [14]. It occurs only if the

black hole is initially macroscopic, formed by a prompt col-

lapse. And in this case, after the transient phase, the behavior

of physical quantities at I+
R does not even depend on the mass.

The situation with universality bares parallels to the discov-

ery of critical phenomena at the threshold of gravitational col-

lapse in classical general relativity [15] where universal prop-

erties were discovered in a system that, at the time, seemed

to have been already explored exhaustively. Of course, nu-

merical investigations cannot prove universality; here we only

studied two families of initial data. However, since these fam-

ilies, in particular the distribution, are not ‘special’ in any way,

we believe this is strong evidence that universality is a feature

of the ‘pure’ quantum decay of a GDH, pure in that the decay

is not contaminated by a continued infall from I−

R .

Finally, along the last ray, our simulations show that cur-

vature remains finite. Thus, contrary to wide spread belief,

based in part on [3], and in contrast to simplified and soluble

models, there is no ‘thunderbolt singularity’ in the metric.

V. Conclusions. In the external field approximation, the en-

ergy flux is initially zero and, after the transient phase, quickly

asymptotes to the Hawking value FHaw = N̄~κ2/2 ≡ 0.5
for the constants used in the simulations shown here. In the
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MFA calculation, on the other hand, at the end of the tran-

sient phase the energy flux is higher than this value, keeps

monotonically increasing and is about 70% greater than FHaw

when MBondi ∼ 2N̄MPl (see Fig 3). One might first think

that the increase is because, as in 4D, the black hole gets hot-

ter as it evaporates. This is not so: For CGHS black holes,

THaw = κ~/2π and κ is an absolute constant. Rather, the

departure from FHaw = 0.5 shows that, once the back reac-

tion is included, the flux fails to be thermal at the late stage of

evaporation, even while the black hole is macroscopic. This

removes a widely quoted obstacle against the possibility that

the outgoing quantum state is pure in the full theory.

In the classical solution, I+
R is complete and its causal past

covers only a part of space-time; there is an event horizon. But

I+
R is smaller than I−

L in a precise sense: z−, the affine param-

eter along I−

L is finite at the future end of I+
R . This is why pure

states on I−

L of a test quantum field f̂− on the classical solu-

tion evolve to mixed states on I+
R [4, 7], i.e., why the S matrix

is non-unitary. In the MFA, by contrast, our analysis shows

that as expected y− is finite at the last ray on I+
R . Thus, I+

R is

incomplete whence we cannot even ask if the semi-classical

space-time admits an event horizon; what forms and evapo-

rates is, rather, the GDH. However, this incompleteness also

opens the possibility that Ī+
R , the right null infinity of the full

quantum space-time, may be larger than I+
R and unitarity may

be restored. Indeed, since there is no thunderbolt, space-time

can be continued beyond the last ray. In the mean field the-

ory the extension is ambiguous. But it is reasonable to expect

that the ambiguities will be removed by full quantum gravity

[16]. Indeed, since we only have (0.864/24)MPl of Bondi

mass left over at the last ray per evaporation channel (i.e.,

per scalar field), it is reasonable to assume that this remain-

der will quickly evaporate after the last ray and MATV
Bondi and

FATV will continue to be zero along the quantum extension

Ī+
R of I+

R . The form of FATV now implies that Ī+
R is ‘as long

as’ as I−

L and hence the S-matrix is unitary: The vacuum state

on I−

L evolves to a many-particle state with finite norm on Ī+
R

[4, 7]. Thus unitarity of the S matrix follows from rather mild

assumptions on what transpires beyond the last ray.

Note, however, this unitarity of the S-matrix from I−

R to the

extended I+
R does not imply that all the information in the in-

falling matter on I−

R is imprinted in the outgoing state on Ī+
R .

Indeed, the outgoing quantum state is completely determined

by the function y−(z−) and our universality results imply that,

on I+
R , this function only depends on MADM and not on fur-

ther details of the matter profile [5]. Since only a tiny fraction

of Planck mass is radiated per channel in the portion of Ī+
R

that is not already in I+
R , it seems highly unlikely that the re-

maining information can be encoded in the functional form

of y−(z−) in that portion. Thus, information in the matter

profile on I−

R will not all be recovered at Ī+
R even in the full

quantum theory of the CGHS model. This contradicts a gen-

eral belief; indeed, because the importance of y−(z−) was not

appreciated and its universality was not even suspected, there

have been attempts at constructing mechanisms for recovery

of this information [9].

To summarize, in 2D there are two distinct issues: i) uni-

tarity of the S-matrix from I−

L to Ī+
R ; and ii) recovery of the

infalling information on I−

R at Ī+
R . The distinction arises be-

cause right and left pieces of I± do not talk to each other.

In 4D, by contrast, we only have one I− and only one I+.

Therefore if the S-matrix from I− to I+ is unitary, all infor-

mation in the ingoing state at I− is automatically recovered in

the outgoing state at I+. To the extent that the CGHS analysis

provides guidance for the 4D case, it suggests that unitarity of

the S-matrix should continue to hold also in 4D [7].
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