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Torsional degrees of freedom play an important role in modern gravity theories as well as in
condensed matter systems where they can be modeled by defects in solids. Here we isolate a class
of torsion models that support torsion configurations with a localized, conserved charge that adopts
integer values. The charge is topological in nature and the torsional configurations can be thought
of as torsional ‘monopole’ solutions. We explore some of the properties of these configurations in
gravity models with non-vanishing curvature, and discuss the possible existence of such monopoles
in condensed matter systems. To conclude, we show how the monopoles can be thought of as a
natural generalization of the Cartan spiral staircase.
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The analogy between geometry and defects in grav-
ity theories and in theories of elasticity in solids is an
old and well developed field of study [1–7]. Disclinations
and dislocations in crystals are defects in the ordered lat-
tice which carry finite curvature and torsion respectively.
Transporting a particle around a disclination (disloca-
tion) produces a non-zero rotation (translation) by the
end of the cycle. Dislocations are particularly interest-
ing because, while sources of curvature are ubiquitous in
the natural universe, the effects of torsion are less pro-
nounced experimentally[8, 9]. In solids, however, dislo-
cations affect many material properties and are present
even in the cleanest materials. Thus condensed matter
systems can provide useful laboratories to study torsion.

The defects that we will describe cannot be described
by the classical geometric theory of elasticity. Instead,
these defects may occur in materials described by microp-
olar elasticity theory[10]. Micropolar elasticity theory
(or Cosserat elasticity) is a simple extension of classical
elasticity to include local orientational degrees of free-
dom of the constituent particles/molecules of the elas-
tic medium. The defect we investigate, which we dub
a torsional ‘monopole’ (TM), does not require a lattice
deformation, but a deformation texture in the local ro-
tational degrees of freedom. Such defects could exist in
biological or granular systems (two common systems de-
scribed by micropolar elasticity) and may affect solids
with a strong coupling between orbital electronic motion
and local spin or orbital degrees of freedom. The struc-
ture of a TM is shown in Fig. 1, and we will present
a general treatment of these defects in a gravitational
context in flat and curved space and give an explicit con-
struction of a TM while showing its relation to defects in
solids and the “Cartan spiral staircase.” It is important
to note that these defects lie outside the typical topolog-
ical defects found in gauge theories in e.g Refs [11, 12].
We begin with a simple formulation of our construction
in flat space. To isolate the purely torsional degrees of
freedom, we will begin with three highly constraining

FIG. 1. A cross-section through the origin of a torsion
monopole with Q = 1. The globe picks out three directions
which form an orthonormal triad. The monopole pictured
has a radius of five lattice sites, and it is formed by rotating
each globe along a radial line directed from the origin by an
amount proportional to the radius of the lattice site, until the
angle of rotation reaches 2π at r = 5.

ansätze. In order to focus on the minimal, kinematical
properties of torsional defects, and to make the theory
as generalizable as possible to various condensed matter
and gravity theories, we will not assume an underlying
dynamical geometric theory. We begin with the typi-
cal ingredients of Einstein-Cartan gravity, but we will
not impose the Einstein-Cartan or any other dynamical
equations of motion. For generality we will work with
the 4D Lorentzian theory, but all of the major results are
applicable to 3D Euclidean systems. Thus, we take the
geometry to be described by a Spin(3, 1) ' SO(3, 1) '
SL(2,C) gauge theory whose connection coefficient in a
local trivialization is the spin-connection ω, and a (co)-
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frame (tetrad) field e, which is a one-form taking values
in the adjoint representation of Spin(3, 1). The three
ansätze we will make are (i)the manifold has the topol-
ogy of R4 and the metric induced from the co-frame eI

is the flat Minkowski metric i.e. in Cartesian coordi-
nates g = ηIJ e

I ⊗ eJ = −dt2 + dx2 + dy2 + dz2 (ii)
the spin connection ωIJ has vanishing curvature; thus,
we have a Weitzenböck spacetime, and (iii) the spin con-
nection asymptotically approaches the Levi-Civita con-
nection (the special connection compatible with eI) at
spatial infinity so that limr→∞ ω = Γ[e]. We refer to a
geometry satisfying these conditions as a torqued geome-
try for reasons that will become clear.

We will denote the Levi-Civita connection associated
with the tetrad by Γ = Γ[e] i.e. DΓe

I = deI +ΓIJ ∧eJ =
0. For any connection A let the curvature RA = dA+A∧
A. Since the metric is Minkowski, RΓ = 0. and since the
space is Weitzenböck Rω = 0 as well. However, we do
not assume that the spin-connection is compatible with
the tetrad, and the (generically non-zero) torsion is given
by the usual expression T I = Dωe

I = deI + ωIJ ∧ eJ .
The assumption that the spin-connection asymptotically
approaches the Levi-Civita connection at spatial infin-
ity implies that limr→∞ T I = 0. The rate at which the
torsion must tend to zero will be fixed later. It will be
useful to express the spin-connection ω in terms of the
Levi-Civita connection Γ by

ωIJ = ΓIJ + CIJ (1)

where CIJ = C [IJ]
µ dx

µ is the contorsion tensor[13].
In Minkowski space all flat connections are gauge re-

lated (since π1(R4) = 0) and thus, we can express the
spin-connection in terms of the Levi-Civita connection
as (in the fundamental representation, where we drop
explicit indices)

ω = gΓg−1 − dg g−1 . (2)

The group element g = g(x) is the “relative gauge” be-
tween the spin connection and the tetrad. The term
torqued geometry is in reference to the relationship be-
tween the spin connection and Levi-Civita connection in
Eq. 2. Using Eqs. (1) and (2) we have:

C = gΓg−1 − dg g−1 − Γ = −DΓg g
−1 . (3)

We will occasionally use the ‘trivial’ gauge where the

tetrad in Cartesian coordinates is
0
eI = δIµ dx

µ, and the

corresponding Levi-Civita connection Γ[
0
e] = 0. For

0
e =

heh−1 the spin connection is

ω′ = hωh−1 − dhh−1 = −dg′g′−1 with g′ = hgh−1 .(4)

One of the key properties of the torsional configura-
tions that follows from our flatness ansatz is the exis-
tence of a conserved current. To see this, consider the

curvature of the spin connection expressed in terms of
the contorsion tensor. From the definition we have

Rω = RΓ +DΓC + C ∧ C = DΓC + C ∧ C = 0

which follows since both RΓ, Rω = 0. Now consider

Ω ≡ TrD
(

1

4π2
(DΓC + C ∧ C) ∧ (DΓC + C ∧ C)

)
=

1

4π2
d TrD

(
C ∧DΓC +

2

3
C ∧ C ∧ C

)
(5)

with TrD(·) = 1
DTr(·) where D is the dimension of the

representation. Defining the topological current three-

form ξ
(3)
C ≡ 1

4π2TrD

(
C ∧DΓC +

2

3
C ∧ C ∧ C

)
and rec-

ognizing that Ω = 0, we see that the current is conserved:

dξ
(3)
C = 0.
The current allows us to define a conserved charge. To

do this, we will first fix our asymptotic boundary con-
ditions on the torsion so that the defects we will con-
sider are spatially isolated. It is sufficient to assume
that in the trivial gauge, C, and thus T, fall off like 1

r
as r → ∞. Thus, in this gauge the relative gauge given
in Eq. (4), must be such that g′ → constant near spatial
infinity. This allows for the standard compactification
Σ ' R3 ∪ {∞} ' S3 for a spatial slice Σ. Due to the
assumed fall-off conditions on the torsion, the flux of cur-
rent through the timelike cylinder at asymptotic infinity
is zero, so we define the conserved torsional-charge

Q ≡
∫

Σ

ξ
(3)
C = − 1

12π2

∫
Σ

TrD (C ∧ C ∧ C) . (6)

One can also define a conserved dual current by taking
the internal Hodge dual of one of the components in the
four-form of (5) however the corresponding charge van-
ishes identically for our class of geometries.

The conservation of the charge is a purely kinematic
property, independent of any dynamics to which the TMs
are subjected. Indeed, the charges are topological in na-
ture and under small deformations {δe, δω} that preserve
the flatness constraints we have δQ = 0. In fact, Q takes
quantized integer values as we will now show.

First, we note that despite its similarity to the Chern-
Simons functional, the charge Q is different in that
it is identically gauge invariant under both large and
small gauge transformations. Thus, we can choose a
convenient gauge in order to compute the charge. We
choose the trivial gauge where the contorsion is given
by C = −dg′g′−1 (c.f. Eq. 4). Thus in this gauge
using Eq. (6), we have (using the shorthand notation
(dgg−1)3 = TrD(dgg−1 ∧ dgg−1 ∧ dgg−1))

Q =
1

12π2

∫
Σ

(dg′g′−1)3 =
1

12π2

∫
Σ

(dgg−1)3 . (7)

We recognize the last line as the index or winding num-
ber of the map g : Σ→ Spin(3, 1). The winding number
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is well defined since Spin(3, 1) has SU(2) as its max-
imal compact subgroup. Such maps are classified by
π3(Spin(3, 1)) = Z and thus Q ∈ Z.

To construct explicit configurations with non-zero
charge we borrow from well-known results in SU(2)
Yang-Mills theories (see e.g. [14]). We will work in the
trivial gauge in Cartesian coordinates so the tetrad is
eIµ = δIµ and ΓIJ = 0. In this gauge ω = −dg′g′−1,

and defining τi = 1
2εijkγ

jγk, where γI are generators of
the Clifford algebra, and i, j, k... = 1, 2, 3... are spatial
indices, we take g′ to be ((i) labels which TM)

g′ = g(i) = cos(χ(i))1 + sin(χ(i))
xa − xa(i)
|~x− ~x(i)|

τa (8)

where χ(i) = χ(i)(∆r(i)) with ∆r(i) = |~x − ~x(i)| is any
continuous and differentiable function that monotoni-
cally increases from 0 at ∆r(i) = 0 to π at ∆r(i) = ∞.
To ensure the configuration is well behaved, we assume
∂χ(i)

∂∆r(i)

∣∣
∆r(i)=0

=
∂χ(i)

∂∆r(i)

∣∣
∆r(i)=∞

= 0. For a TM of charge

q located at the origin (~x(i) = 0), the contorsion is

Cij =− 2
[
εijk X̂

kdχ+ sin(χ) cos(χ) εijk dX̂
k

− 2 sin2(χ) X̂ [idX̂j]
]
. (9)

The torsional charge for this configuration can be explic-
itly computed to yield Q = 1. We can then use this group
element to generate multiple TM solutions of the generic
form C = −dg′g′−1 with g′ = gq1(1)g

q2
(2) . . . g

qN
(N) and charge

Q = q1 + q2 + · · ·+ qN .
It is worthwhile to address a potential source of confu-

sion stemming from the analogous geometric constructs
in Yang-Mills theory. We have referred to the config-
urations above as monopoles because they are spatially
isolated torsional defects of a topological nature. How-
ever, typical nomenclature in Yang-Mills theories asso-
ciates monopoles with π2(G), and instantons with π3(G).
Despite similarities to analogous structures in Yang-Mills
theories, the TM has some fundamental differences. The
key property that allows for a stable, gauge invariant
topological structure in three dimensions is that the topo-
logical charge can be identified not with a single Chern-
Simons functional but with the difference of two Chern-
Simons functionals: Q =

∫
Σ

(CS(ω) − CS(Γ)). The re-
sulting quantity is invariant under large gauge transfor-
mations, unlike either of its two constituents, but the
quantity picks out the winding number of the relative
gauge between the two connections.

Our major results can be extended to a class of curved
spacetimes. Given a tetrad e and its associated Γ[e],
we focus on the class of geometries in which the spin
connection differs from Γ[e] only by a relative gauge:

ω = gΓg−1 − dg g−1 Rω = gRΓg
−1 . (10)

The contorsion is still given Eq. 3 but the curvature is
non-vanishing so generically the contorsion satisfies the

condition DΓC + C ∧ C = gRΓg
−1 − RΓ. Nevertheless,

there is still a conserved current since

Ω =
1

4π2
TrD (Rω ∧Rω −RΓ ∧RΓ) = 0 . (11)

and Ω = d(CS(ω) − CS(Γ)) ≡ dJ̃ = 0. The current
3-form is entirely torsional in nature as it can be written

J̃ = ξ
(3)
C +

1

2π2
TrD (2C ∧RΓ) . (12)

This current is conserved and being the difference of
two Chern-Simons functionals that differ by a relative
gauge, g, we clearly have Q = 1

12π2

∫
S3(dg g−1)3. Thus,

the charge is topologically quantized.
Now we return to flat space to discuss the analogy

with defects in solids. Thus far, we have viewed torqued
geometries as a deformation of the spin-connection by
a relative gauge transformation. To model a TM it is
convenient to make a (true, not relative) gauge transfor-
mation to absorb the deformation entirely in the tetrad.
It is sufficient to work with 3d Euclidean space and we
denote the triad by Eia. The geometric variables describ-
ing a torqued geometry before the transformation are

E =
0

E, and ω = g
0

Γg−1 − dg g−1 where
0

E is a fiducial

Euclidean flat tetrad and
0

Γ = Γ[
0

E] is the correspond-
ing Levi-Civita connection. Gauge transforming by g−1

we obtain E′ = g−1
0

Eg and ω′ = g−1ωg − dg−1 g =
0

Γ.
Now the deformation induced by the relative gauge is en-
coded in the triad as opposed to the spin connection. For
a single TM of charge q located at the origin, the relative

gauge g = cos(q χ(r))1 + i sin(q χ(r)) x̂a
0

Eai σ
i, where σi

are the Pauli matrices, is an element of SU(2) at each

point. For clarity, fix the fiducial triad to be
0

Eia = δia.
We focus on the behavior of E

′i
a along any ray begin-

ning at the origin and ending at asymptotic infinity. The
gauge transformation represents a rotation at each point
around the axis defined by the ray. Since χ(0) = 0 at the
origin, and monotonically increases to χ(∞) = π, the
relative gauge represents a spatial rotation of the fiducial
triad around the radial axis such that the rotation is the
identity at the origin and increases monotonically to 2πq
at infinity. The direction is clockwise or counterclockwise
depending on the sign of q.

The realization of a model for the TM in a condensed
matter system points out some of the deficiencies of the
classical geometric theory of elasticity. The classical ge-
ometric theory of dislocations and disclinations has the
Euclidean Poincaré group G = SO(3) n T (3) as a gauge
group where T (3) is the set of three dimensional transla-
tions [15]. Disclinations are defects associated with the
rotational degrees of freedom, and in this model, the ab-
sence of disclinations is associated with the vanishing of
the curvature of the spin connection Rω = 0 [2–6]. Thus,
the TM, which can exist in geometries with vanishing
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curvature is not composed of disclinations. Next we con-
sider pure dislocations which are described by a non-zero
torsion associated with the translation group. In a solid
we have a lattice which breaks the continuous translation
symmetry down to a discrete subgroup. The topological
charges of defects in the translation sector are thus given
by πn(T (3)/Z ⊕ Z ⊕ Z) = πn(T 3) where πn is the n-th
homotopy group, Z ⊕ Z ⊕ Z represents the space of 3d
discrete translations, and T 3 is the 3-torus. The only
topologically stable defects are line defects (dislocations
due to π1(T 3) = Z⊕Z⊕Z) and thus our point-like TM is
not a dislocation. In fact, these arguments are immedi-
ately apparent if we choose the gauge for the TM where
the entire deformation is in the triad. This deformation
does not require a lattice deformation and thus is not
effectively captured in classical elasticity theory.

To support the TM we need consider the local rota-
tional degrees of freedom of the objects forming the elas-
tic medium and thus materials described by micropolar
elasticity[5, 10]. We imagine molecules or grains to which
a local triad is associated. This set of axes describes the
local orientation of the molecule. A fiducial geometry
has all the local triads aligned and the TM is a defect
texture centered the origin (see Fig. 1). The molecules
along a radial ray are rotated around the ray-axis. If the
orientations are realigned outside a radius R then the
topological charge is equal to the number of revolutions
carried out between r = 0 and r = R. In the continuum
theory, the gauge group (in the 3D Euclidean case) is
G = SU(2), and the isometry group is the subgroup that
leaves the triad fixed, namely the rotations by 2π form-
ing a Z2 subgroup. Thus, the relevant homotopy group
is π3(SU(2)/Z2) = π3(SO(3)). The existence of the TM
is a reflection of the property π3(SO(3)) = Z.

These defects will affect the elastic behavior of microp-
olar media, but perhaps it is more interesting to consider
possible effects in the electronic behavior of solids. Al-
though we leave this analysis open for future work we
comment that these defects would likely affect the elec-
tronic behavior of materials with strong spin-orbit cou-
pling since they are very sensitive to the local orientation
of the orbitals. In fact, the new class of 3+1-d topo-
logical insulators[16, 17] at low-energy are described by
the massive Dirac Hamiltonian H = piΓ

i + mΓ0 for a
trivial geometric background. When coupled to a back-
ground torsion monopole H gains a term proportional to(
q∂rχ(r) + r−1 sin(2qχ(r))

)
Γ5. This coupling to the ax-

ial current will cause Dirac fermion states to be repulsed
or attracted by a TM depending on the amount of left or
right handed character mixed into the state. Addition-
ally, half-integer spin particles which adiabatically pass
through a TM from the origin to infinity pick up a phase
of −1 from the 2π spin-rotation which can lead to in-
terference effects. Both of these effects will affect the
electronic structure near a TM and may be measurable.

Using TM we can generalize Cartan’s spiral staircase

to the spherical case (which we might refer to as Cartan’s
spiral stairway to heaven). Cartan’s spiral staircase is the
name given to a model for a space with torsion first de-
scribed in 1922 [5, 7, 18]. We will choose a particular χ(r)
that makes the analogy as clear as possible. Suppose one
were sitting on the surface of a sphere (say the earth) at
radius r0 and desired to build a spiral stairway analogous
to Cartan’s spiral staircase, but oriented in the radial di-
rection. Our model is easiest to understand by rotating
the Euclidean triad and fixing the spin connection to be
ωij = 0. Take the triad E′ above with

χ(r) =


0 for 0 ≤ r ≤ r0

π
λ (r − r0) for r0 ≤ r ≤ r0 + q0λ

π for r0 + λ ≤ r .
(13)

This gives a TM localized within radius r0 + q0λ with
torsional charge Q = q0. Using the geometric description
above, this TM is easy to visualize. Traveling from the
sphere at r0 outward to r0+q0λ the triad rotates by q0 full
turns around the radial ray. To extend the stairway to we
can just increase the topological charge by sending q0 →
∞ which generates Cartan’s spiral stairway to heaven.
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