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We place two atoms in quantum superposition states and observe coherent phase evolution for
3.4 × 1015 cycles. Correlation signals from the two atoms yield information about their relative
phase even after the probe radiation has decohered. This technique allowed a frequency comparison

of two 27Al+ ions with fractional uncertainty 3.7+1.0

−0.8 × 10−16/
√

τ/s. Two measures of the Q-factor

are reported: The Q-factor derived from quantum coherence is 3.4+2.4

−1.1 ×1016, and the spectroscopic

Q-factor for a Ramsey time of 3 s is 6.7 × 1015. We demonstrate a method to detect the individual
quantum states of two Al+ ions in a Mg+-Al+-Al+ linear ion chain without spatially resolving the
ions.

Coherent evolution of quantum superpositions follows
directly from Schrödinger’s equation, and is a hallmark of
quantum mechanics. Quantum systems with a high de-
gree of coherence are desirable for sensitive measurements
and for studies in quantum control. Typically, quantum
superposition states quickly decohere due to uncontrolled
interactions between the system and its environment.
However, through careful isolation and system prepara-
tion, quantum coherence has been observed in naturally
occurring systems including photons and atoms, as well
as in engineered macroscopic systems [1–4]. In order to
observe the coherence time of a system, it must be com-
pared to a reference system that is at least as coherent,
a requirement that can be difficult to satisfy, particu-
larly in systems with the highest degree of coherence. In
atomic physics, quality (Q-) factors as high as 1 × 1014

to 5 × 1014 [5–8] have been observed with laser spec-
troscopy, where the linewidths are often limited by laser
noise rather than atomic decoherence. In this report we
apply a recent spectroscopic technique [9] to directly ob-
serve atomic coherence beyond the laser limit and probe
an atomic resonance with a Q-factor above 1015.

Historically, Mössbauer spectroscopy with γ-rays has
exhibited the highest relative coherence, as quantified by
the spectroscopic Q-factor (the ratio of oscillation fre-
quency to observed resonance linewidth). Values as high
as 8.3×1014 are observed [10] in the 93.3 keV radioactive
decay of 67Zn, limited by the nuclear lifetime of 13.4 µs.
One crystal containing 67Zn provided the probe radia-
tion, while another served as the resonant absorber. The
Mössbauer method might be extended to characterize op-
tical transitions in atoms [11], but here we use a method
based on Ramsey spectroscopy in which the phase fluctu-
ations of the probe source are rejected as common-mode
noise [9], enabling Ramsey times that exceed the probe
coherence. Other experiments that compare pairs of mi-
crowave [12] or optical clocks [13] use a related technique
to reduce Dick-effect noise [14, 15].

In the experiment reported here, atomic superposition
states evolve coherently for up to 5 s at a frequency of
1.12 × 1015 Hz. Following Chwalla et al. [9], a Ram-
sey pulse sequence [16] is simultaneously applied to two
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FIG. 1: (Color online) Illustration of the protocol. (a) The
detected states from the previous Ramsey experiment serve
as the initial states for the the current measurement. (b)
First π/2-pulse, driven by a laser beam whose axis is along
the axis of the ion array. (c) The clock state superpositions
freely evolve. (d) Spacing adjustment at the end of the free-
evolution period to vary the differential phase ∆φ, followed
immediately by the second π/2-pulse. At the end of the se-
quence, ion states are detected to obtain the correlation.

trapped 27Al+ ions, labeled i ∈ {1, 2} (see Fig. 1). The
probe radiation for both ions is derived from the same
source. Each ion is initialized in one of the two quantum
states that make up the clock transition (clock states),
which need not be the same for both ions. Immediately
prior to the second π/2-pulse, a variable displacement ri

is applied to the ions. This Ramsey sequence induces
a state change with probability pi = (1 + cos δφi)/2,
where δφi = φL + k · ri − φi is the difference between
the phase accumulated by the laser (φL+k · ri) and ion
(φi) during the free-evolution period T , and k is the
laser beam wavevector, k = ẑ2π/(267 nm). The cor-
relation probability (the probability that both ions make
a transition, or both do not make a transition) is then
P = [2 + cos (δφ1 − δφ2) + cos (δφ1 + δφ2)]/4. Here the
relative phase, δφ1 − δφ2, is independent of φL, which
is uniformly randomized over the interval [0, 2π) by a
pseudo-random number generator. Without knowledge
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of φL, the probability of correlated transitions is

Pc =
1

2π

∫ 2π

0

PdφL =
1

2
+

C

2
cos∆φ, (1)

where ∆φ = φ2 − φ1 + k · (r1 − r2) and C ≡ Pc, max −
Pc, min ≤ 1

2
is the contrast.

The correlation signal Pc yields the differential phase
of the two Al+ “clock” ions, similar to the measure-
ment of differential phase between source and absorber in
Mössbauer spectroscopy. Its noise properties are equiva-
lent to that of a single-ion Ramsey experiment with re-
duced contrast, and the statistical measurement uncer-
tainty is determined by quantum projection noise [17].
When |∆φ| is kept near π/2, the statistical uncertainty
of the ion-ion fractional frequency difference, or measure-
ment instability, is σ(τ) ≡ σν/ν = (2πνC

√
Tτ)−1, where

τ is the total measurement duration, σν is the uncertainty
in the measured frequency difference (φ2 −φ1)/2πT , and
ν ≈ 1.12 PHz is the transition frequency. Importantly,
the free-evolution period T is not limited by laser phase
noise.

In the experiment, a linear Paul trap confines one
25Mg+ ion and two Al+ ions in an array [18, 19] along the
trap z-axis (Fig. 1). The motional frequencies of a single
Mg+ in the trap are {fx, fy, fz} = {5.13, 6.86, 3.00}MHz.
The ions are maintained in the order of Mg+-Al+-Al+

(inter-ion spacing 2.69 µm) by periodically adjusting the
trap conditions and verifying via Mg+ spectroscopy the
frequency of the “stretch” mode of motion, whose value
is 5.1 MHz for the correct order [20].

The two Al+ clock states, |↓〉 ≡ |1S0, mF = 5/2〉 and
|↑〉 ≡ |3P0, mF = 5/2〉, are detected with an adaptive
quantum non-demolition process [19]. The present im-
plementation distinguishes all four states |↓1↓2〉, |↓1↑2〉,
|↑1↓2〉, and |↑1↑2〉 by observing Mg+ fluorescence after
controlled interactions between the Al+ and Mg+ ions.
Individual state detection relies on the two Al+ ions
having different amplitudes in several motional eigen-
modes, which affects the state-mapping probability onto
the Mg+ ion. Information from several measurements is
combined in a Bayesian process [19], to determine the
most likely state of the two Al+ ions with typically 99 %
probability in an average of 30 detection cycles (approx-
imately 50 ms total duration). This technique allows
individual state detection of two ions in the same trap,
without the need for high spatial-resolution optics.

The Ramsey experiments have π/2-pulse durations of
1.2 ms and are carried out for various free-evolution pe-
riods T . For each T , ∆φz ≡ k · (r1 − r2) is varied from
0 to beyond 2π by reducing the z-axis trap confinement
and thereby increasing the ion spacing [21]. The du-
ration required to shift ri is approximately 10 ms [22].
Figure 2 shows the correlation signals for T between 0.1
and 5 s. Currently, collisions (approximately 0.7/minute)
between the ions and background gas make it impracti-
cal to generate sufficient statistics for T greater than 5 s.
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FIG. 2: (Color online) Correlation probabilities Pc versus ∆φz

for various Ramsey times: (a) 0.1 s, 1500 probes; (b) 0.5 s,
600 probes;(c) 1 s, 600 probes; (d) 2 s, 360 probes; (e) 3 s,
300 probes; (f) 5 s, 100 probes. Dots: measurement outcomes;
lines: maximum-likelihood fits to the fringes.

The collisions result in changes of ion order and loss of
ions due to chemical reactions.

The phase difference φ2 − φ1, and thus the frequency
difference, between the two Al+ ions can be determined
from the phases of the Pc fringes in Fig. 2. In the exper-
iment, we apply a magnetic field gradient of 1.32 ± 0.33
mT/m, as measured by monitoring the frequency of the
|F = 3, mF = −3〉 → |F = 2, mF = −2〉 magnetic-
field dependent transition in the 25Mg+ 3s S1/2 ground
state hyperfine manifold, when the Mg+ position along
the trap axis is adjusted. This gradient induces a frac-
tional frequency shift (ν2 − ν1)/ν = 1.32 ± 0.33 × 10−16

between the |↓〉 ↔ |↑〉 transitions of the two Al+ ions.
The phases of the Pc fringes, determined by maximum-
likelihood fits [23], increase linearly with T , as shown in
Fig. 3a. A linear fit has a slope of 0.84 ± 0.06 rad/s,
corresponding to a measured shift of 1.19± 0.08× 10−16,
in agreement with the shift caused by the magnetic-field
gradient. All reported uncertainties represent a 68 %
confidence interval.

We derive the contrast C from the maximum-likelihood
fits to the data in Fig. 2. An exponential fit of C versus
T yields a relative coherence time TC of 9.7+6.9

−3.1 s, corre-

sponding to a Q-factor (Q = πνTC [24]) of 3.4+2.4
−1.1×1016.

A uniform prior distribution of TC on the interval 0 s to
25 s is assumed. The measured coherence time is compat-
ible with the expected result, which is given by the life-
time T ′ = 20.6± 1.4 s [25] of the Al+ |3P0〉 state. When
viewed in terms of Ramsey spectroscopy, for T = 3 s, the
full-width-at-half-maximum of the Ramsey signal corre-
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FIG. 3: (Color online) (a) Differential phase φ2 − φ1 ver-
sus Ramsey time T . The solid line is a linear fit, with slope
0.84± 0.06 rad/s. (b) Measurement uncertainty extrapolated
to 1 s averaging time as a function of Ramsey time. Dots:
measurement results, where the uncertainties are derived from
the uncertainties in the contrast C; solid line: theoretical
lifetime-limited instability, where only phases corresponding
to ∆φ ≈ ±π/2 are probed; dashed line: expected experi-
mental instability, with ∆φ uniformly distributed over [0, 2π).
The dashed line is derived from the measured coherence time
of 9.7 s, and an approximate overhead of 100 ms per Ramsey
measurement, which reduces the duty cycle.

sponds to a Q-factor of 2νT = 6.7 × 1015.

The current protocol could significantly reduce the to-
tal duration of future high-precision measurements with
atomic clocks. Figure 3b shows the measurement un-
certainties extrapolated to 1 s (σ1s) versus Ramsey time
T . The long-term statistical uncertainty is then σ(τ) =
σ1s/

√

τ/s for a measurement duration τ . For T = 3 s,
the frequency difference between the two Al+ ions can be
determined with a fractional uncertainty σ = 1.1×10−17

in a 1126 s measurement (900 s integrated free-evolution
time), which can be extrapolated to infer a relative mea-
surement uncertainty σ1s = 3.7×10−16. This result may
be compared to a recent frequency difference measure-
ment of two Al+ clocks, where 65,000 s were required to
reach the same uncertainty of 1.1×10−17 [18]. In general,
the lifetime-limited contrast is C = 1

2
exp(−T/T ′), yield-

ing an instability of σ(τ) = exp(T/T ′)/(πν
√

Tτ), which
is shown for Al+ in Fig. 3b (solid line). The optimal
probe time of T = T ′/2 yields σ1s = 1.4 × 10−16.

Although we have used the technique to measure two
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FIG. 4: (Color online) Proposed frequency comparison of re-
mote optical clocks, here based on Al+ ions. Paths 1 and 2
that direct the clock laser light to the ions must be phase-
stabilized. Local frequency fluctuations, such as those caused
by magnetic-field noise, should be minimized. The free evo-
lution periods are synchronized so that the atoms experience
the same phase noise in the Ramsey pulses, the effect of which
cancels in the protocol.

ions in the same trap, it may also be applied to clocks at
different locations. A proposed frequency comparison of
remote optical clocks is depicted in Fig. 4. The Ramsey
free-evolution time T will initially be varied from a short
duration to a long one, as shown in Fig. 3a. This step
allows a coarse determination of the difference-frequency,
to know which fringe of the periodic Ramsey signal is be-
ing probed at long durations. As is common in atomic
clocks, the main measurement proceeds via lock-in detec-
tion at the longest free-evolution time and with a phase
difference that is modulated between ∆φ ≈ ±π/2 to max-
imize stability.

Note, however, that due to the requirement that φL be
the same for both clocks, this technique is limited to com-
parisons between clocks operating at similar frequencies.
Although the clocks need not be identical, the differential
phase, ∆φ, must be known well enough to make phase
errors of π unlikely. In order to retain control over the
differential phase, the individual paths (paths 1 and 2 in
Fig. 4) need to be phase-stabilized and the Ramsey pulses
at the two locations need to be synchronized so that the
two clocks experience the same laser phase noise. For
ions with very long radiative lifetimes, the same tech-
nique could be used to compare two ion samples, each
composed of maximally entangled states [26, 27].

A similar approach can be taken in comparisons of
two clocks composed of many unentangled atoms. The
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measurement protocol is again based on synchronized
Ramsey pulses where the free-evolution time T ex-
ceeds the laser coherence time. The two clocks (la-
beled X ∈ {A, B}) measure transition probabilities
pX = 1

2
[1 + cos (φX − φL − θX)], and the quantity of

interest δφAB = φA − φB is determined from δφAB =
cos−1 (2pA − 1)−cos−1 (2pB − 1)+θA−θB, where θX are
the controlled laser phase offsets at the two clocks. If we
consider only atomic projection noise in pA and pB, this
measurement has a variance of var(δφAB) = 1

NA
+ 1

NB
,

where NA and NB are the numbers of atoms in clocks
A and B. The fractional frequency stability of the clock
comparison is then σy(τ) =

√

var(δφAB)/(2πν
√

Tτ).
A complication is introduced by the fact that φL will

be initially unknown, which leads to ambiguities in the
trigonometric inversions from which δφAB is calculated.
Such ambiguities will be absent in the majority of mea-
surements, if an approximate value of δφAB can be deter-
mined through prior calibrations (with var(δφAB) ≪ 1),
and phase offsets θX are adjusted such that φA − φB −
(θA−θB) ≈ π/2. After this calibration procedure, pA and
pB represent approximate quadratures of the laser-atom
phase difference, and for most values of φL the trigono-
metric inversions are unambiguous. In such a measure-
ment the Ramsey free-evolution time is no longer con-
strained by laser decoherence, and the Dick effect due
to the probe source is absent. Therefore, more rapid
frequency comparisons of similar-frequency many-atom
optical clocks should also be possible.

Small values of σ(τ) in frequency comparisons are use-
ful for evaluating and improving the performance of opti-
cal clocks and for metrological applications. For example,
comparison of clocks in geographically distinct locations
can be used to evaluate spatial and temporal variations
in the geoid [7, 13]. More generally, any physical process
that leads to small, constant frequency shifts in an optical
clock can be studied in this way. This includes relativistic
effects as well as shifts caused by electric fields, magnetic
fields and atom collisions. Our observation of a Q-factor
beyond 1015 and a frequency ratio measurement instabil-
ity of 3.7×10−16/

√

τ/s highlights the intrinsic sensitivity
of optical clocks as a metrological tool.
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