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We argue that multiband superconductor with sign changing gaps may have multiple spin resonances. We

calculate the RPA-based spin resonance spectra of pnictide superconductor using five band tight-binding model

or angle-resolved photoemission spectroscopy (ARPES) Fermi surface (FS) and experimental values of super-

conducting (SC) gaps. The resonance spectra split both in energy and momenta due to the effects of multiband

and multiple gaps in a s±−pairing; the higher energy peak appears around the commensurate momenta due to

scattering between α−FS to γ/δ−FS pockets. The second resonance is incommensurate coming from β−FS

to γ/δ−FS scatterings and its q−vector is doping dependent−hence on the FS topology. Energies of both res-

onances ω1,2
res are strongly doping dependent and is proportional to the gap amplitudes at the contributing FSs.

We also discuss the evolution of the spin excitation spectra with various other possible gap symmetries, which

may be relevant when either both the electron pockets or both the hole pockets completely disappear.

PACS numbers: 74.70.Xa,74.40.-n,74.20.Rp,74.25.Jb

Introduction: The magnetic resonance behavior which is

directly probed by the inelastic neutron scattering (INS) spec-

troscopy gives valuable information about the pairing mecha-

nism of the unconventional superconductors. In cuprates, INS

exhibits a clear signature of a resonance mode in addition to

its characteristic dispersion (known as ‘hour-glass’ behavior)

which are enhanced dramatically below Tc, and the mode en-

ergy scales universally with the SC gap amplitude.[1] In a

multiband unconventional superconductors, the situation be-

comes more complex due to the presence of the multibands,

multiple SC gaps as well as possibilities of having multiple

pairing symmetries. Given the important role the spin reso-

nance played in the identification of pairing symmetry in the

past, we investigate the details of spin resonance in a multi-

band models relevant for pnictide superconductors. The pri-

mary question we ask: could multiple superconducting gaps

at various bands lead to multiple spin resonances as opposed

to the case of single spin resonance for single band super-

conductors? We find that indeed multiband superconductors

could have multiple spin resonances. It is also important to

study how does the resonance spectra evolve in (q, ω)−phase

space as function of doping and other parameters.

An example of multiband superconductor is MgB2. It is

a conventional s−wave superconductor and its signal in the

INS measurement is absent as the magnetic spectra is sen-

sitive to the sign change of the SC gap on the FS sheet.[2]

Recently discovered pnictides offer a new testing ground for

these ideas.[3, 4] In pnictides, it is now generally accepted that

an unconventional s± pairing symmetry is present with evi-

dence coming from ARPES[5] and other probes[6, 7]. This

conclusion is also supported by theoretical calculations[8, 9].

We have performed a standard BCS susceptibility calcula-

tion within RPA framework with s±−wave pairing symmetry

for the materials with the Fe-122 band structure. The com-

puted dispersion and intensity of the spin polarized INS spec-

tra reveal: (i) two SC gaps set scale for the two spin reso-

nances ω1
res, ω2

res that arise from the fact that the SC gap mag-

nitudes (although same pairing symmetries) are different at

two hole pockets at Γ. At the same time the momenta for spin

resonances are different: ω1
res is commensurate and ω2

res is

incommensurate (with doping dependent q−vectors). (ii) We

also find that both ω1
res and ω2

res are also doping dependent

but universally proportional to the SC gap amplitudes. When

one of the hole pockets disappears, one of the resonances also

disappears. (iii) Furthermore, we also show that when both

hole pockets or both electron pockets vanish completely from

the FS, the pairing symmetry should be changed to one of the

form which will give change of sign at the same FS and as

a result the intraband scattering spectra will be shifted to the

low-energy and low-momenta scale.[9]

Large energy scale of both modes ω1
res ∼ 8 − 15meV and

ω2
res ∼ 5 − 12meV depending on doping makes it likely that

both resonances can be seen in INS. There is a clear evidence

for the first commensurate resonance[10, 11] and there is also

some evidence for the second mode[10–12] whose energy and

q−values agree well with our calculation.

Formalism: The bare dispersion and its corresponding

oribital characters are calculated solving five d−orbitals (in

one Fe unit cell) tight-binding formalism.[13] We obtain dop-

ing by right band shift method. In a multi-orbital SC state, the

BCS free-fermion susceptibility is a tensor[8] given by

χ0rstu(q, iωm) = −
1

2

∑

k,n,ν,ν′

Mνν′

rstu(k,q)[Gν
k(iωn)

×Gν′

k+q(iωn + iωm) + F ν
k (iωn)F ν′

−k−q(−iωn − ωm)].(1)

Here ν (ν′) is the initial (final) eigenstate coming from s, t
(r, u) orbitals and G and F are the normal and anomalous

part of the Green’s function. M is the orbital to band ma-

trix element (ME) made of the eigenvectors. The many body

poles in the dressed χ is obtained within RPA framework. The

terms in the spin RPA interaction vertex Us that are included

in the present calculation are intraorbital interaction U , an in-

terorbital interaction V , Hund’s rule coupling J > 0, and the
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pair hopping strength J ′. The rest of the interaction can be

expressed in term of U as V = U − 5J = 4, J = U/4 and

J ′ = J .[8] While the calculations are done in unfolded one Fe

per unit cell Brillouin zone (BZ), the results are subsequently

folded to two Fe per unit cell BZ.
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FIG. 1: (Color online) (a-b) RPA-BCS χ′′(ω), plotted for calcu-

lation including ME effect, M from Eq. 1 in (a) and without in-

cluding ME effect (M = 1) in (b). (d-g) The corresponding lower

panel figures clarify the mechanism of double resonances at two rep-

resentative momenta cuts. χ′′s are shifted by a constant value to

ease comparison with others, while they all go to zero at ω = 0.

In (f-g), when 1/Ueff intersects with χ′
0, a true resonance occurs

within RPA. In (d-e), the 1/U in Us vertex do not directly inter-

sect to total χ′
0, but to its intraorbital components only and thus not

shown.[13] (c) Corresponding LDA FS in the folded zone is plot-

ted at same doping. The white to black background color gives the

s±−symmetry. The two arrows point the nesting channels which are

responsible for the two modes in (a). The calculation is done with

SC gap ∆α = ∆γ/δ = 2∆β = 7meV.

Double resonances: Fig. 1 shows our computed magnetic

spectrum as a function of energy along the diagonal direction

in the SC state for an representative doping of x = 0.20. The

essential ingredient for the appearance of two resonances is

having different amplitudes of gaps on different pieces of FSs.

ARPES measures the average SC gaps which follows roughly

for all dopings as ∆α ≈ ∆γ/δ ≈ 2∆β , where α and β are

the inner and outer hole pockets at Γ and γ/δ are the electron

pockets at M = (π, π) as shown in Fig. 1(c).

The superconductivity is included in BCS formalism

with s±−pairing symmetry as ∆i(k) = ∆i[cos (kxa) +
cos (kya)]/2, where i is the band index. With these exper-

imental inputs, we find a clear signature of two resonance

modes: ω1
res ∼ 0.75×(2∆α) near the commensurate momen-

tum Q = (π, π) and the second one at ω2
res ∼ 0.5× (2∆α) <

ω1
res at an incommensurate vector q ∼ 0.78(π, π). This is the

main result of this paper.

According to the conventional view, apart from the ME ef-

fect the magnetic structure in BCS χ′
0 is entirely governed by

the sign change of gaps at the ‘hot-spots’ and the energy con-

servation formula for inelastic scattering of Bogoliubov quasi-

particle on the FS[14]

ωνν′

(kF ,q) = |∆ν
kF

| + |∆ν′

kF +q|. (2)

At these locus on the (q, ω)−phase space, χ′
0 attains a loga-

rithmic jump, and due to Kramers’ Kronig relation χ′′
0 have

discontinuous peak as shown by blue solid and green dashed

lines in Figs. 1(d-e). Therefore within RPA, for broad range

of interaction U a resonance is possible at the same locus.[9]

With these observations, apart from the true intensity of χ′
0,

all its dispersion in magnetic spectrum can be understood from

the spanning vectors qs between various FS pieces which have

opposite signs of the SC gap.

At the doping considered in Fig. 1, all four pockets are

present on the FS, see Fig. 1(c). For the case of s±−pairing,

gap below the magnetic BZ is always positive and above that,

it is negative, i.e. α, β FS always have positive sign while

γ, δ bands have negative sign at all dopings studied here, as

illustrated by the white to black color background in Fig. 1(c).

Thus only the inelastic scattering between α, β ↔ γ, δ is al-

lowed and the others including intraband scattering are pro-

hibited. The α−FS piece resides closer to the Γ−point than

the β one and γ/δ lies close to M = (π, π) points. There-

fore the corresponding magnetic vector Q1 for the scattering

channel α ↔ γ, δ is larger than Q2 for β ↔ γ, δ.

To clarify the physical origin of the two energy scales

within RPA, we take two representative q cuts for χ′
0, χ′′

0 and

χ′′(RPA), Fig. 1(d) and (e). At Q = (π, π) in Fig. 1(d), χ′
0

shows two characteristic peaks at ω1
res and ω2

res coming from

Q1 and the residual Q2 scatterings respectively. The former

peak is stronger than the latter as the corresponding vector Q1

spans up to Q but Q2 < (π, π). The situation is reversed at

q = 0.78(π, π) where Q1 > 0.78(π, π) but Q2 ∼ 0.78(π, π)
and thus the lower energy peak gains more intensity while the

higher energy one goes negative, prohibiting the possibility of

any resonance to occur within RPA.

In RPA, the resonance peaks are set by the locus (Eq. 2)

and intensity (ME in Eq 1) of the discontinuities of χ′
0. We

use U = 1.1eV, the choice that is reasonable; moreover the

results are representative and remains qualitatively same for

different U . The value of U is close to the value of 1.2eV

used in earlier calculation to produce one resonance, which is

closer to the first resonance we find here.[8] With this choice

of U , the higher energy peak in χ′
0 yields resonance peak at

[Q, ω1
res], which is clearly separated from the second reso-

nance at [0.78(π, π), ω2
res]. Away from these two sharp reso-

nance peaks, the intensity is spread out over the large (q, ω)
region, showing a remarkable downward dispersion as shown

Fig. 1(a). The downward dispersion in pnictide can be con-

trasted to the upward dispersion seen in chalcogenides.[15]

In the rest of the paper, we introduce a minimal model cal-

culation of the INS spectra using ARPES or LDA FS which

may still be valid in a multiband system even when the ME
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FIG. 2: (Color online) (a-c) Computed spectra of χ′′(q, ω) are plot-

ted in color for underdoping in (a), optimal doping in (b) and over-

doping in (c) of hole doped sample. The magenta and yellow lines

are the q and ω integrated value of χ′′ respectively. The two energy

scales in (b) match well with the available data at the same doping

in Ref. 10. (d-f) The ARPES FSs corresponding to the INS spectra

given in their upper panel at the same dopings[5].

effects are neglected (M = 1 in Eq. 1). We investigate the

consequences of avoiding ME effect in Figs. 1(b) and 1(f-

g). χ′
0 shows qualitative similarity between the calculation

with and without including ME [compare Fig. 1(d-e) with

Fig. 1(f-g)]: while both the peaks are still present, the lo-

cations of their maxima are shifted slightly both in q and ω
space. But the relative intensity of the peaks are subject to

change, which can be compensated by tuning the effecting

interaction Ueff . Technically, setting the ME to be 1, we

get all components of χ tensor to be equal in Eq. 1. Ap-

proximating the RPA interaction vertex Us by an effective

scalar interaction Ueff < U , we can simplify the total RPA

χ =
∑

χ̃0(1̃ − Ũsχ̃0)
−1 ≈ χ0(1 − Ueffχ0)

−1 (the symbol

tilde over a quantity signifies that it is a tensor). We find that

Ueff = 0.1eV can reasonably reproduce the results obtained

with ME effect including both resonances and the downward

dispersion of the spectra. Of course this approximation does

not preclude us from analyzing the full problem but merely

simplifies the analysis.

In this approach, we compute the INS spectra with RPA

correction using the FS obtained either from ARPES when-

ever available or from LDA. The other input in our calcula-

tion is the gap values which we obtain from various probes as

listed in the corresponding figures below. An added benefit of

this approach is that it allows us to compute the INS spectrum

entirely from experimental inputs, which is one of our goals.

Doping dependence of two resonances: We compute the

doping evolution of the two resonances using experimental

SC gaps and the ARPES FS. We note that while the doping de-

pendence of the two resonances can also be obtained from the
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FIG. 3: (Color online) Computed INS spectra plotted for two under-

dopings in (a,b) and optimal doping in (c) of electron doped case. (d-

f) The corresponding FSs are given at their lower panels at the same

dopings obtained from LDA band in (d) and (e) and from ARPES

data[16] in (f). The gap values in (d) and (e) are available from pen-

etration depth measurement[17], optics[18] respectively at the same

dopings where the same values for (c) is obtained from ARPES[16].

In LDA, FS pockets are known to be slightly larger than the experi-

mental value due to the neglect of the spin density wave order.[19].

full BCS-RPA calculation (not shown), but the energy and q

values of the resonances in determined more accurately from

the ARPES FS due to its inconsistency with LDA FS.

Fig. 2 shows our computed spin resonance spectrum along

the diagonal direction in the SC state as a function of dopings

in hole doped Fe-122 compounds. The separation between the

two resonances both in energy and momenta is present for the

doping range when the both the hole pockets at Γ are present.

The first mode, ω1
res, occurs at Q = (π, π) at all dopings

with a dispersion branch which is characteristic of the shape

of the α−FSs. On the contrary, the doping dependence of

the second mode Q2 is significantly large, deviating from a

commensurate to incommensurate spectra as the contributing

β−FS grows in size with hole doping. We predict that with

further underdoping, the second mode persists even when the

first mode may disappear at a doping when the α−FS van-

ishes (see electron doping below). Furthermore, we predict

that with overdoping, when the electron pockets at M disap-

pear, both these resonances will vanish. And, if the pairing

is still present, the corresponding gap symmetry will change

to the one for which the gap will change sign in the same FS

pieces (such as dx2−y2 or dxy); the neutron mode will be con-

fined to the small q-space (see supplementary material).

For electron doping the q dependence of the second mode is

opposite to the hole doping as the doping evolutions of its FS

topology is opposite to that of the hole-doped one, see Fig. 3.

With increasing electron doping, the hole pockets at Γ grad-

ually disappear while the electron pockets grow in size. The

spatial separation between the two modes gradually decreases
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as distance between the α− and β−FSs decreases and both

modes tend to be more commensurate in nature than that in

the higher doping of the hole-doped side. This behavior is

consistent with the reasons why the static commensurate spin-

density wave order is more stable in electron-doping than in

the hole doped one.[6, 7, 19] Finally, when the α band van-

ishes from the FS, ω1
res also vanishes, see Fig. 3(c).

For electron doping, even when the first resonance van-

ishes at x = 0.15, the second resonance is still present at

ωres = 9.3meV at Q for the ARPES FS and the experimental

gap amplitudes and agrees reasonably with the experimental

value of 8.6meV at Q at a slightly larger doping of x = 0.16
[Ref. 12]. And with further electron doping, the β−FS also

vanishes and the second resonance disappears. In this doping

the superconductivity is seen to disappear.[20]
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FIG. 4: (Color online) Doping dependence of two resonance ener-

gies and the SC gap amplitudes. The open symbols of various colors

gives the SC gap values [red circles=∆α, blue squares=∆β , green

stars=∆γ/δ] as taken from experiments (see text). The filled sym-

bols are the two resonances energies [magenta lower (cyan upper)

triangles=ω1

res (ω2

res)], shown in Figs. 1,2. The shadings of same

colors are guide to eyes.

The two modes are not only q−resolved, they also appear

at two energy scales as their underlying scattering states have

different gap values. According to Eq. 2, each of the INS

spectrum is directly related to the SC gap values of partici-

pating scattering states. For example, the resonance at Q1,

ω1
res = ∆α|g

α
kF

| + ∆γ/δ|g
γ/δ
kF +Q1

| ≈ 2∆αgα
kF

, using the

fact that ∆α ≈ ∆γ/δ and gα
kF

= −g
γ/δ
kF +q. Therefore, in

pnictide the leading or the higher energy resonance is always

ω1
res ∝ 2∆α at all dopings (see Fig. 4). The proportionality

constant is doping dependent, set by the value of the ‘hot-spot’

momenta. At optimal doping x = 0.4 of hole doped case,

we find that ω1
res = 13.7meV and ω2

res = 10meV using the

ARPES FS and gap values which agrees remarkable well with

the experimental value of 14meV and 9.5meV respectively at

the same doping[10]. There is no one-to-one correspondence

of the resonance energy with Tc as 2∆/kBTc is found to be

doping dependent[5].

This universal relationship between the resonance energy

and SC gaps indicates that pnictides are in the weak- or

intermediate-superconducting-coupling region where mean-

field treatment of the SC state works well. Interestingly, the

intensity of the resonance is found experimentally to follow

the same T dependence of the SC gaps and vanishes at Tc in

pnictide[11] and chalcogenides[21]. The universal relation-

ship ωres ∝ (∆1 +∆2) (where ∆1, ∆2 are the SC gap ampli-

tudes of the two orbitals connected by ‘hot-spot’) is also found

to be consistent with other families of superconductors.[1]

Conclusion: In conclusion, we have shown that for a multi-

band system with unconventional pairing with sign-changing

gaps, one expects to find multiple spin resonances which are

separated both in energy and momenta. The essential mech-

anism for having two resonances in pnictide is the splitting

between two hole pockets with different gap amplitudes. The

difference in SC gaps and q−vectors of these two bands are

the main reason why we see two resonances. Any calcula-

tion invoking two bands will thus miss the second resonance.

These results can be compared with INS experiments with the

aim to observe second resonance in pnictides.

The present computation does not have any free parameter

as both the required FS information is obtained either from

ARPES or LDA and the SC gap values are taken from ex-

periments. Our method of analysis reveals an intriguing re-

lationship between the ARPES and INS measurements and

one spectroscopic information can be extracted from the other

one. This will give an important tool for any other multiband

superconductors to study the pairing symmetry and/or the FS

information which are still not clear.
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