
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Superconducting Phase with a Chiral f-Wave Pairing
Symmetry and Majorana Fermions Induced in a Hole-Doped

Semiconductor
Li Mao, Junren Shi, Qian Niu, and Chuanwei Zhang

Phys. Rev. Lett. 106, 157003 — Published 13 April 2011
DOI: 10.1103/PhysRevLett.106.157003

http://dx.doi.org/10.1103/PhysRevLett.106.157003


LX12153

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Superconducting phase with a chiral f-wave pairing symmetry and Majorana fermions
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We show that a chiral f + if -wave superconducting pairing may be induced in the lowest heavy
hole band of a hole-doped semiconductor thin film through proximity contact with an s-wave super-
conductor. The chirality of the pairing originates from the 3π Berry phase accumulated for a heavy
hole moving along a close path on the Fermi surface. There exist three chiral gapless Majorana edge
states, in consistence with the chiral f + if -wave pairing. We show the existence of zero energy
Majorana fermions in vortices in the semiconductor-superconductor heterostructure by solving the
Bogoliubov-de-Gennes equations numerically as well as analytically in the strong confinement limit.
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Superconductors/superfluids with unconventional
pairings have been an important subject in condensed
matter physics for many decades because of their rich
physics and important applications. There has been
considerable experimental evidence to support that the
pairing symmetry in high-Tc superconductors is d-wave
[1]. The pairing symmetry in the superfluid 3He was
found to be p-wave [2]. The superconducting order pa-
rameters in Sr2RuO4 and some heavy-fermion materials
are suggested to be chiral px + ipy wave [3], although the
true nature of the order parameters in these materials
has not been fully settled in experiments [4, 5]. The
importance of chiral p-wave superconductor/superfluids
is that the quasiparticle excitation inside a vortex
is a zero-energy Majorana fermion with non-Abelian
exchange statistics, which is a crucial ingredient for
topological quantum computation (TQC) [6].

However, in contrast to the simple s-wave supercon-
ductor described by the BCS theory, the theoretical
description and experimental identification of uncon-
ventional superconductivity and the associated exotic
physics in natural solid state systems are often difficult,
and in many systems, controversial. For instance, despite
the tremendous technological potential, the observation
of the exotic properties such as quantum half-vortices
and non-Abelian statistics in Sr2RuO4 has been a seri-
ous problem because of the small quasiparticle excitation
energy gap as well as the intrinsic spin-orbit coupling in
the suggested p-wave order parameter [7]. Therefore it
should be not only interesting, but also important to in-
vestigate whether various unconventional superconduct-
ing pairings and the associated exotic physics can be ex-
ternally induced from conventional s-wave superconduc-
tors/superfluids [8–11]. For instance, schemes have been
proposed recently to induce the zero-energy Majorana
fermions in the vortex core of conventional s-wave super-
conductors that are proximately coupled to topological
insulators or electron-doped semiconductors [9–11].

In this Letter, we propose that a chiral f + if -wave

superconducting pairing can be induced in a hole-doped

semiconductor thin film through the proximity contact
with an s-wave superconductor. To the best of our knowl-
edge, a chiral f + if -wave superconducting pairing and
the associated exotic physics have not been unequivocally
identified in any condensed matter system. The induced
chiral f + if -wave pairing symmetry has a topological
origin: the geometric phase [12, 13] of holes in the Bloch
band. It is well known that an electron/hole evolving
adiabatically in the reciprocal space accumulates a geo-
metric phase associating with the adiabatic change of the
quasi-momentum [13], in analogy to the Aharanov-Bohm
phase acquired by electron moving in the real space in
the presence of a magnetic field. The geometric phase
is nonzero in the hole-doped semiconductors with non-
vanishing spin-orbit coupling, which tunes an original s-
wave pairing into a chiral f + if -wave pairing for holes in
the lowest energy band. The induced chiral f + if -wave
superconductor has a full pairing gap in the 2D bulk,
and 3 gapless chiral Majorana fermions at the edge. By
solving the Bogoliubov-de-Gennes (BdG) equations an-
alytically and numerically, we show that there exists a
Majorana zero energy state in the vortex core of the
semiconductor-superconductor heterostructure in some
parameter regions. The corresponding quasiparticle ex-
change statistics in this system is the same as that for a
chiral p-wave superconductor or superfluid, therefore the
proposed heterostructure can be used as a platform for
observing non-Abelian statistics and performing TQC.
The advantage of using hole-doped, instead of electron-
doped, semiconductors for TQC is that hole-doped semi-
conductors have stronger spin-orbit coupling due to the
larger effective mass of holes and the p-like symmetry of
the valence band, resulting in larger carrier densities.

The physical system we consider is a heterostructure
composed of an s-wave superconductor, a hole-doped
semiconductor thin film, and a magnetic insulator (Fig.
1a). In the semiconductor thin film, the dynamics of
holes can be described by a single particle effective Hamil-
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Figure 1. (Color online) (a) A schematic illustration of the
heterostructure composed of a hole-doped semiconductor thin
film, an s-wave superconductor, and a magnetic insulator. (b)
The Band structure of the hole-doped semiconductor. The
lower (upper) two bands are the HH (LH). α = 2 × 105 m/s,

~
p

〈k2
z
〉 = 3 × 10−26 kg·m/s, γ1 = 6.92, γ2 = 2.1, h0 = 1.75

meV. The parameters are chosen from GaAs (other materials
(e.g., InAs, InSb) yield the same physics). The hole density
is ∼ 4 × 1012 cm−2.

tonian that contains both Luttinger four band model and
spin-3/2 Rashba term [14]

H0 =
[

(γ1 + 5γ2/2)k2 − 2γ2 (k · J)2
]

/2m

+α (J × k) · ẑ + 2h0Jz − µ, (1)

where J is the total angular momentum operator for a
spin-3/2 hole, γ1 and γ2 are the Luttinger parameters,
µ is the chemical potential. Henceforth we set ~ = 1.
The confinement of the quantum well along the z di-
rection makes the momentum be quantized on this axis,
that is, 〈kz〉 ≈ 0 ,

〈

k2
z

〉

= (π/a)2, where a is the thick-
ness of the quantum well. α is the Rashba spin-orbit
coupling strength. The crucial difference between the
Rashba terms in the 2D hole and electron gases is that J

in the 2D hole gas (2DHG) is a spin-3/2 matrix, describ-
ing both the heavy holes (HH) and light holes (LH). The
term 2h0Jz describes a Zeeman splitting induced either
through the polarization of the local magnetic moments
in the semiconductor [16] or the exchange field through
the contact with a magnetic insulator.

The eigenstates of the Hamiltonian (1) can be written
as

Ψk =
(

u0e
−i3θk , iu1e

−i2θk , −u2e
−iθk , −iu3

)T
(2)

where θk is the azimuthal angle of k, ui are functions of
k only and the eigenstates of the reduced Hamiltonian

H̄0 = −γ2k
2J2

y /m − αkJx − γ2

〈

k2
z

〉

J2
z /m + 2h0Jz . (3)

The particular choice of the wavefunction (2) ensures
that the wavefunction for the lowest HH band is single-
valued at k = 0 (i.e., only u3 6= 0 at k = 0). Additional
phase eimθk need be multiplied to the wavefunctions for
the other bands to ensure the single value. In Fig. 1b,
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Figure 2. (Color online) (a) Plot of A(k) with respect to
k. (b) Plot of the bulk quasiparticle energy En of Eq. (9).
Solid, dashed, dotted, and dashed dotted lines correspond to
the lowest to the highest bands in Fig. 1b. µ = −32.5 eV.
The other parameters are the same as that in Fig. 1.

we plot the energy spectrum for the 2DHG. The degen-
eracy between different HH and LH bands at k = 0 is
lifted due to nonzero

〈

k2
z

〉

and h0. In the strong (weak)

confinement region 2γ2

〈

k2
z

〉

/m > (<) 4h0, the second
lowest energy band is the HH (LH) with the correspond-
ing wavefunction Ψkei3θk (Ψkeiθk).

The proximity-induced superconductivity is described
by the Hamiltonian [17]

Ĥp =
∑

mJ=1/2,3/2

∫

dr
{

∆s (r) c†mJ
c†−mJ

+ H.c.
}

,

(4)
where c†mJ

are the creation operators for holes with the
angular momentum mJ and ∆s (r) is the proximity-
induced gap. When µ lies between the lowest two bands
(Fig. 1b), and only the lowest HH band is occupied, the
effective superconducting pairing for holes becomes

∆eff ∝ 〈aka−k〉 ∝ i∆sg (k) exp (i3θk) , (5)

where ak =
∑

mJ
χmJ

ckmJ
is the annihilation operator

for holes at the lowest HH state Ψk, with the coefficient
χmJ

= Ψ∗
kmJ

, g (k) = 2 (u0u3 + u1u2). We have used

∆s ∝
〈

akmJ
a−k(−mJ )

〉

and
〈

akmJ
a−km′

J

〉

= 0 if mJ 6=
−m′

J to derive Eq. (5). Clearly the pairing order ∆eff

has a chiral f + if -wave symmetry. Around the Fermi
surface g (k) → 1, that is, ∆eff → i∆s exp (i3θk).

The 3θk phase in ∆eff originates from a 3π Berry
phase accumulated when the holes move in the momen-
tum space. In the lowest HH band, the Berry phase for
a hole along a loop on the Fermi surface is

φ =

∫ k2

k1

A · dk = A (kF ) δθk, (6)

where the Berry connection A = i 〈Ψk| ∇k |Ψk〉 =
A (k)∇θk with A (k) =

(

3u2
0 + 2u2

1 + u2
2

)

, δθk = θk2
−θk1

is the change of the azimuthal angle from k1 to k2. In
Fig. 2a, we see A (k) → 3/2 around the Fermi surface
for the lowest HH state, indicating a 3δθk/2 Berry phase
(3π for a close loop) for a single hole and 3δθk phase for
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a Cooper pair. Therefore ∆eff in the lowest band has
a phase factor exp (i3θk). Similarly, we find the Berry
phases for the upper HH, lower LH, and upper LH bands
are −3π, π, and −π (Fig. 2a), respectively, which means
that their superconducting pairing symmetries are chiral
f − if , px + ipy, px − ipy-waves, respectively.

The physics origin of the chiral f + if -wave supercon-
ducting pairing in the lowest HH band is more transpar-
ent in the strong confinement limit (k ≪

√

〈k2
z〉), where

the four band Hamiltonian (1) can be diagonalized into
two effective two-band Hamiltonians for the HH and LH
respectively. The effective Hamiltonian Hhh for the HH

Hhh = η0k
4+η1k

2+iβ
(

k3
−σ+ − k3

+σ−

)

+3h0σz−µ̄. (7)

Here k± = kx ± iky, σ± = (σx ± iσy) /2 are Pauli ma-
trices applied on the two HH states (denoted as pseu-
dospin ↑ and ↓), ηi are the reduced coefficients, β is
the effective coupling strength, µ̄ is the effective chem-
ical potential. The Hamiltonian (7) is similar as the
Rashba type of Hamiltonian for electron-doped semi-
conductors except that kx + iky is now replaced with

(kx + iky)
3

= k exp (i3θk) and there is a k4 term to en-
sure the bands bend up for a large k. Therefore a chiral
f + if -wave superconducting pairing is obtained when
only the lowest HH band is occupied with holes.

A chiral f + if -wave superconductor should have a full
pairing gap in the 2D bulk, and C = 3 gapless chiral
Majorana fermions at the edge [18], where

C =
1

2π

∑

En<0

∫

d2
k Ω

n
z (8)

is the first Chern number, and Ω
n
z =

−2Im〈∂Φn/∂kx|∂Φn/∂ky〉 is the Berry curvature of
the n-th band. En and Φn are eigenenergies and
wavefunctions of the BdG equation

(

H0 ∆s(r)
∆∗

s(r) −σ̄xτyH∗
0 τy σ̄x

)

Φn(r) = EnΦn(r) (9)

in the Nambu spinor basis. Here Φn(r) = [un,3/2 un,1/2

un,−1/2 un,−3/2 vn,−3/2 vn,−1/2 −vn,1/2 −vn,3/2]
T is the

quasiparticle wavefunction, σ̄x = diag (σx, σx), τy =
(

0 −iI2×2

iI2×2 0

)

. In a uniform system with a constant

∆s(r), the BdG Eq. (9) can be solved in the momentum
space and the quasiparticle energy dispersions En (k) are
plotted in Fig. 2b. We see a 2∆s energy gap is opened at
the Fermi surface. Using the eigenwavefunctions Φn for
bands with En < 0, we confirm that the Chern number
C = 3, which is consistent with the chiral f + if -wave
superconducting pairing and yields 3 gapless chiral Ma-
jorana fermions at the edge of the superconductor.

The chiral f + if -wave pairing may lead to novel ex-
otic physics that has not been explored before (e.g.,
fractional Josephson effects [19]). Here we focus on
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Figure 3. (Color online) Plot of the wavefunction of the zero
energy state. µ = −32.5 meV lies in the gap between two HH
bands. The other parameters are the same as that in Fig. 1.
Inset: Plot of the s-wave pairing gap with a vortex.

the Majorana fermions in vortices in the heterostruc-
ture that can be used for TQC. In the presence of a
vortex in the heterostructure, the pairing order param-
eter takes the form ∆s(r) = ∆s(r)e

iθ . For simplic-
ity of the calculation, we consider a 2D cylinder ge-
ometry with a hard wall at the radius r = R and
a single vortex at r = 0. This system preserves the
rotation symmetry and the BdG equation can be de-
coupled into different angular momentum channels in-
dexed by l with the corresponding spinor wavefunction
Φl

n(r) = eilθ[ul
n,3/2e

−iθ,ul
n,1/2,u

l
n,−1/2e

iθ,ul
n,−3/2e

2iθ,

vl
n,−3/2e

−2iθ,vl
n,−1/2e

−iθ,vl
n,1/2,v

l
n,3/2e

iθ]T . Here u and v

are functions of r only. The special form of Φl
n(r) is cho-

sen to preserve the particle-hole symmetry at l = 0 and
to remove the θ dependence in the BdG equation (9).
If Φl

n(r) is a solution with an energy E, then there is
another solution with the energy −E in the −l channel.
Henceforth we only consider E ≥ 0 solutions.

Generally the BdG Eq. (9) with a vortex cannot
be solved analytically. Here we numerically solve the
Eq. (9) and calculate the quasiparticle eigenenergies and
eigenwavefunctions. We use the pairing gap ∆s from a
self-consistence solution of the BdG equation for a pure
s-wave superconductor with a small R = 25k−1

c (the
Fermi vector kc for the s-wave superconductor is cho-
sen as 0.5 nm−1). Because the pairing gap approaches
the bulk value in a distance much larger than k−1

c , we
can extend the pairing gap to a larger R = 300k−1

c by
inserting the uniform bulk value (see the inset in Fig.
3). We find that there exists a unique zero energy solu-
tion when µ lies in the gap between the lowest two HH
bands (Fig. 1b). In Fig. 3, we plot the two components
u0

0,1/2(r) and v0
0,1/2(r) of the zero energy wavefunction

Φ0
0(r) and find u0

0,1/2(r) = −v0
0,1/2(r). We also confirm

that u0
0,mJ

(r) = −v0
0,mJ

(r) for other mJ . Therefore the
Bogoliubov quasiparticle operator, defined as

γ†
n = i

∫

dr
∑

mJ

[

unmJ
(r)c†mJ

(r) + vnmJ
(r)cmJ

(r)
]

,

(10)
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Figure 4. Plot of the quasiparticle energies in a vortex core
with respect to the chemical potential µ. Solid: zero energy
state; Dashed: the minigap. Dotted: the bulk excitation gap.
The parameters are the same as that in Fig. 1.

satisfies γ†
0 = γ0, which is a self-Hermitian Majorana op-

erator. Consider two Majorana operators γA and γB in
two vortices. It is easy to show γA → γB, γB → −γA

upon an exchange of two vortices [20]. Therefore the Ma-
jorana zero energy modes satisfy the same non-Abelian
braiding statistics as that in a chiral p-wave supercon-
ductor/superfluid [21, 22] and can be used for TQC.

In Fig. 4, we plot the zero energy state (the lowest
energy level at the l = 0 channel), the bulk excitation
gap (the first excitation at the l = 0 channel), and the
minigap energy (the lowest energy level in the vortex core
at the l = 1 channel) with respect to µ. When µ lies in
the gap between the lowest two HH bands, there exists
a unique zero energy solution, which originates from the
broken time reversal symmetry of the chiral f + if -wave
superconducting pairing. The minigap is the topological
gap protecting the Majorana fermions in the zero energy
states and the associated non-Abelian braiding statistics
from finite temperature effects. The numerical results
show that the magnitude of the minigap is at the order
between ∆s and ∆2

s/EF . Additional numerical calcula-
tion shows that Majorana fermions also exist for a vortex
with a winding number −3 or other odd numbers. We
also find that the Majorana fermions exist when the sec-
ond lowest band is LH, instead of HH.

The existence of the Majorana zero energy modes can
also be demonstrated analytically in the strong confine-
ment limit. In this limit, the single particle Hamil-
tonian H0 is replaced with Hhh in (7). The spinor
wavefunction at the l channel changes to Φl

n(r) =
eilθ[ul

n↑e
−iθ,ul

n↓e
2iθ,vl

n↓e
−2iθ,−vl

n↑e
iθ]T . The BdG equa-

tion can be reduced to a 2 × 2 matrix form
(

̥0 − µ̄ + 3h0 β̥1 + λ∆s

−β̥2 − λ∆s ̥4 − µ̄ − 3h0

) (

u↑ (r)
u↓ (r)

)

= 0 (11)

for a zero energy state after θ is eliminated us-
ing the wavefunction Φl

n(r) and the particle-hole
symmetry of the wavefunction is taken into ac-

count. Here ̥0 (r) = η0

(

Q − r−2
)2

+ η1

(

Q − r−2
)

,

̥1 (r) = ∂r

(

∂r + r−1
) (

∂r + 2r−1
)

, ̥2 (r) =
(

∂r + r−1
)

∂r

(

∂r − r−1
)

, ̥4 (r) = η0

(

Q − 4r−2
)2

+

η1

(

Q − 4r−2
)

, Q = ∂2

∂r2 + 1
r

∂
∂r , uσ (r) = λvσ (r). We ap-

proximate the radial dependence of ∆s as a step function,
i.e., ∆s = 0 for 0 ≤ r ≤ ξ, and ∆0 for r > ξ. Detailed
analysis of the wavefunction (u↑ (r) , u↓ (r))T shows that
there are four and five independent solutions of Eq.
(11) inside and outside the vortex core respectively in
the parameter region λ = −1 and µ̄2 + ∆2 < 9h2

0. The
corresponding 9 unknown superposition coefficients for
the total wavefunction match with the 9 constraints
from the continuity of the wavefunction (up to the
third order derivative) and the normalization condition,
yielding a unique zero energy solution.

In summary, we show that a chiral f + if -wave super-
conducting pairing and the associate Majorana physics
may be induced in a hole-doped semiconductor thin film
through the proximity contact with an s-wave supercon-
ductor. The proposed Berry phase mechanism presents a
new possibility for studying unconventional pairing sym-
metry, which is distinctly different from the conventional
scenario in which the pairing is induced by the Boson-
exchange electron-electron interaction mechanism.
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