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Grain boundaries with relatively low energies can be superheated above the melting tem-

perature and eventually melt by heterogeneous nucleation of liquid droplets. We propose

a thermodynamic model of this process based on the sharp interface approximation with a

disjoining potential. The distinct feature of the model is its ability to predict the shape and

size of the critical nucleus using a variational approach. The model reduces to the classi-

cal nucleation theory in the limit of large nuclei but is more general and remains valid for

small nuclei. Contrary to the classical nucleation theory, the model predicts the existence of

a critical temperature of superheating and offers a simple formula for its calculation. The

model is tested against molecular dynamic simulations in which liquid nuclei at a super-

heated boundary were obtained by an adiabatic trapping procedure. The simulation results

demonstrate a reassuring consistency with the model.
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Solids are difficult to superheat above the melting point Tm due to the relative easiness of

heterogeneous nucleation of the liquid phase on the surface, at grain boundaries (GBs) and

at other defects. Diffuse-interface modeling [1–4] and molecular dynamics (MD) simulations

[5] reveal two different modes of GB melting, depending on the relation between the GB free

energy γGB and the solid-liquid interface free energy γSL at Tm. If γGB > 2γSL, the GB cannot

be superheated and its thickness diverges when temperature T approaches Tm. If γGB < 2γSL,

the GB thickness remains finite at Tm and the boundary can be superheated. Both modes of

GB melting can be reproduced within a sharp interface model representing the premelted GB

by a thin liquid layer with interactions between the two solid-liquid interfaces described by a

disjoining potential (DP). A repulsive DP leads to continuous GB melting while a DP with a

minimum reproduces the superheating. Both types of DPs were found in MD simulations of

different GBs [5].

The previous DP-based models assumed uniform thickness of the stable or metastable GB,

precluding direct comparison with the classical nucleation theory (CNT) [6]. Here we propose

a more general model enabling calculations of the size and shape of the critical nucleus, as

well as the nucleation barrier, as functions of the superheating T −Tm. The same quantities

are computed in the heterogeneous CNT using a purely geometric treatment of the interfaces.

The proposed model adopts the sharp-interface approach with a DP but makes the critical step

of performing a variational calculation of the nucleus shape and size. This step was inspired by
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Cahn’s 1957 paper on nucleation on dislocations [7]. Furthermore, a known limitation of CNT

is that it predicts a finite nucleation barrier at arbitrarily high temperatures [6, 8]. The proposed

model removes this limitation by incorporating a DP which accounts for the atomistic nature

of the GB in a rather general way. This leads to prediction of a critical point of superheating

at which the nucleation barrier vanishes.

The GB is modeled by a liquid layer of a width W separated from the grains by two solid-

liquid interfaces. The interfaces interact by a DP Ψ(W ) with a minimum at a thickness W0.

For definitiveness, we will adopt the Morse potential

Ψ(W ) = (2γSL − γGB)
[

e−2a(W−W0)−2e−a(W−W0)
]

, (1)

which has a minimum of depth Ψ(W0) = (γGB −2γSL) < 0. Here γGB and γSL refer to Tm and

are assumed to be constant; a−1 defines the range of the potential. The free energy per unit

area of a uniform GB is

γ(W ) = ∆GVW +2γSL +Ψ(W ), (2)

where ∆GV is the difference between Gibbs free energies per unit volume of the solid and

liquid phases [15]. At temperatures close to Tm, ∆GV ≈ Hm(Tm − T )/Tm, where Hm is the

latent heat of melting per unit volume. At Tm, ∆GV = 0 and γ(W ) reaches the minimum value

γGB at W = W0.

Introducing the dimensionless variables w = W/W0, Γ = γ/γGB, g = −∆GVW0/γGB, β =

(2γSL − γGB)/γGB, α = aW0 and ϕ = Ψ/γGB, Eq. (2) becomes

Γ(w) = −gw+(1+β )+ϕ(w). (3)

In these variables, length is measured in units of W0 and free energy per unit area in units of

γGB. The equilibrium GB thickness we is obtained from the condition Γ′(we) = 0, giving

we = 1+(β/2gc) ln2− (β/2gc) ln
(

1±
√

1−g/gc

)

, (4)

where gc = βα/2. The positive sign gives the stable or metastable GB thickness (minimum

of Γ), whereas the negative sign corresponds to unstable equilibrium (maximum of Γ) existing

only at g > 0 (superheating). The two solutions merge at g = gc when a critical temperature

Tc > Tm is reached. This temperature sets the upper bound of possible superheating of the GB.

Above Tc, Γ is a monotonically decreasing function of w and the GB is absolutely unstable

against melting. The GB thickness at the critical point is

wc
e = 1+(β/2gc) ln2, (5)

i.e., W c
e = W0 +a−1 ln2. Physically a−1 is comparable with W0, thus the critical GB thickness

is not expected to be much greater than W0. Inserting (4) in (3), one obtains an analytical

expression for the equilibrium GB free energy as a function of g and thus temperature.
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At temperatures Tm < T < Tc, the superheated GB melts by heterogeneous nucleation of a

liquid droplet. Calculation of the shape of the critical nucleus and the associated free energy

barrier is a variation problem that can be formulated and solved as follows (see [9] for detail).

For an isotropic GB, the nucleus shape is described by a function W (r), where r is the radial

distance parallel to the GB (Fig. 1). The excess free energy of the GB containing the nucleus,

relative to the metastable GB, is

G = γGBW 2
0

∫ ∞

0

{

−g(w−we)+(1+β )

[

√

(w′)2 /4+1−1

]

+ϕ(w)−ϕ(we)

}

2πρdρ ,

(6)

where ρ = r/W0. The expression in the square brackets is the penalty for increase in the

solid-liquid interface area relative to the plane geometry. The critical nucleus shape w(ρ)

corresponds to the saddle point of G, at which the variational derivative of functional (6) is

zero. This leads to the Euler-Lagrange equation

[

ϕ ′(w)−g
]

ρ −
(1+β )

[

w′ +(w′)3 /4+ρw′′
]

4
[

1+(w′)2 /4
]3/2

= 0 (7)

with the boundary conditions (1) w′ = 0 at ρ = 0 and (2) w′ → 0 at w → we, where we corre-

sponds to the positive sign in Eq. (4). This equation has two solutions: one with w′ ≡ 0 for

the metastable state and the other for the critical nucleus. This equation has been integrated

numerically to give the nucleus shape and thickness w∗ = w(0). Inserting the solution in (6)

gives the nucleation barrier G∗.

In a two-dimensional (2D) version of this model, the nucleus shape is defined by a function

w(x), x being the distance parallel to the GB in the units of W0 (Fig. 1). This function is

obtained from the zero variational derivative of the excess free energy

G = γGBW0L

∫ ∞

0

{

−g(w−we)+(1+β )

[

√

(w′)2 /4+1−1

]

+ϕ(w)−ϕ(we)

}

dx, (8)

(L being the GB dimension normal to x) with similar boundary conditions. Since the integrand

does not depend on x explicitly, we can apply the Beltrami identity. Due to the boundary

conditions, the integration constant is zero and we obtain the differential equation

w′ = 2
√

q2 −1 (9)

where

q =
−(β +1)

−(β +1)−g(w−we)+ϕ (w)−ϕ (we)
(10)

The nucleus thickness w∗ is obtained by solving the equation w′ = 0, i.e. q = 1:

−g(w∗−we)+ϕ (w∗)−ϕ (we) = 0. (11)
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The 2D nucleation barrier is computed by numerical integration,

G∗ = γGBW0L(1+β )

w∗
∫

we

√

q2 −1

q
dw. (12)

It can be shown analytically that this model reduces to CNT when the superheating is small

and thus w∗ ≫ 1. In this limit the model recovers the CNT results

W ∗ = 2
γGB −2γSL

∆GV

, (13)

G∗ =
16πγ3

SL

3∆G2
V

(

1−
3

2
cos

θ

2
+

1

2
cos3 θ

2

)

(14)

in the 3D model and

W ∗ =
γGB −2γSL

∆GV

, (15)

G∗ = −
Lγ2

SL

∆GV

(θ − sinθ) (16)

in 2D. Here, θ is the contact angle satisfying the Young relation 2γSL cos(θ/2) = γGB. For ho-

mogeneous nucleation, the diameter of the spherical droplet W ∗ and the barrier G∗are obtained

from (13) and (14) with γGB = 0 and θ = π .

We tested our model by atomistic simulations of the (540)[001] symmetrical tilt GB in Cu

with the misoriention angle 77◦ and the reciprocal density of coincidence sites ∑ = 41. The

GB was created in a simulation block with dimensions 20×20×20nm3 (543296 atoms). The

block had periodic boundary conditions parallel to the GB and terminated at open surfaces in

the normal direction. The atoms in thin layers near the surfaces were constrained to move only

in the normal direction, imposing zero normal stress. The atomic interactions were modeled

with an embedded-atom potential [10] giving Tm = 1327 K and Hm = 9.72 eV/nm3. The GB

structure consists if an array of closely spaced (1/2) [110] dislocations aligned parallel to the

tilt axis [001] (Fig. 4d in [11]).

The MD simulations were performed in the canonical and microcanonical ensembles for

times up to 50 ns. The temperature was increased by steps starting from 0 K. The block was

pre-expanded according to the thermal expansion factor and annealed to achieve point-defect

equilibrium at each temperature. At temperatures approaching 1410 K, spontaneous melting

was observed by nucleation and growth of a liquid droplet on the GB. Since it was impossible

to superheat the GB above 1410 K, it was concluded that this temperature was approximately

equal to the critical point Tc. The following procedure was applied to stabilize the critical

nuclei below Tc. As soon as a nucleus began to grow in a canonical simulation, we switched

the ensemble to microcanonical. The droplet slightly grew or shrunk until the temperature

stabilized at a new value and the melting/crystallization stopped due to the adiabatic constraint.

This resulted in an equilibrium finite-size droplet at a certain temperature T and nearly zero
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stress. This droplet represented the critical nucleus at the temperature T stabilized by the

adiabatic trap. To obtain a critical nucleus at a different superheating temperature, a small

amount of heat was removed or added to the system followed by re-equilibration.[16] To

visualize the nuclei, each atom was assigned to either the solid or the liquid according to its

energy relative to a chosen discrimination level. This method was used to compute the GB

and nucleus thicknesses We and W ∗. Alternatively, the centrosymmetry method was applied

to produce images revealing the nucleus shape and the surrounding vacancies (Fig. 2) [9]. To

model a heterogeneous 2D nucleation, the block dimension parallel to the tilt axis was reduced

by half, resulting in nucleation of droplets whose thickness was uniform in that direction.

A similar procedure was used to create nearly spherical droplets representing homogeneous

nuclei in the lattice. (The residual stresses were removed by a short isothermo-isobaric run

with a switch back to the microcanonical ensemble.)

The MD results are summarized in Fig. 3. Homogeneous melting is characterized by a large

nucleus size and can be treated within the CNT. Fitting the CNT equation W ∗ = −2γSL/∆GV

to the MD points gives γSL = 0.201 J/m2, a number which is in good agreement with the

experimental value 0.177 J/m2 [12] and recent direct calculations for the (110) solid-liquid Cu

interface, 0.199 J/m2 [13]. Using this γSL, the proposed model and CNT were fitted to the MD

data for heterogeneous nucleation in 3D and 2D by optimizing the value of γGB. The numbers

obtained (in J/m2) are 0.332 (3D model), 0.341 (2D model), 0.331 (3D CNT) and 0.333 (2D

CNT). They are remarkably consistent and are reasonably below the 0 K value of 0.595 J/m2

in agreement with the established temperature trend [14]. The contact angle computed within

CNT is θ = 67.8◦. Fig. 1 illustrates typical shapes of critical nuclei predicted by the model,

which are consistent with typical shapes observed in the MD simulations (Fig. 2). The DP

parameters obtained from the fit are W0 = 0.5 nm and 1/a = 0.36 nm.

Despite the close agreement of the computed γGB values, the CNT and the proposed model

show qualitatively different behaviors near Tc. While the model barrier vanishes at Tc, the

CNT barrier continues to decrease with temperature and remains finite and as high as 3.6

eV at Tc (Fig. 4). The probability of overcoming this barrier is small, contradicting the MD

observations. Overall the model demonstrates a reassuring agreement with the MD results.

The proposed model is more general than the heterogeneous CNT [6]. While the latter is

not expected to be valid when the nucleus and the barrier are small, our model continues to

give physically reasonable results due to the incorporation of the atomic-scale information via

the DP. The particular Morse form (1) of the DP was used as an example. As shown in [9], the

results remain qualitatively similar for other smooth functions with a single minimum and a

single inflection point. All such functions predict a single critical temperature of superheating,

which is obtained from the condition g = gc:

Tc = Tm +Tm (2γSL − γGB)/2Hml, (17)

where l is a characteristic lengthscale of the DP (on the order of a nanometer) [9]. In the future,
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the model could be applied for the analysis of the triple line effect. It could also incorporate

the effect of applied mechanical stresses.
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Figure 1: Shapes of the critical nuclei computed from the model at T = 1349 K for the 2D (blue) and

3D (red) geometries. The finite thickness away from the nuclei represents the premelted boundary and

equals 0.5 nm at Tm.
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(a)

(b)

(c)

Figure 2: Premelted grain boundary (GB) with a three-dimensional critical nucleus at 1357 K stabilized

by adiabatic trapping and visualized by centrosymmetry coloring. Atoms with fcc coordination are not

shown for clarity. (a) Top view; the dislocation lines are vertical. (b) Dislocation lines are normal to

the page. (c) Dislocation lines are horizontal. Although not apparent due to fluctuations, the average

shape of the nucleus does not possess a twofold symmetry around the GB normal due to the lack of

such symmetry in the GB structure and anisotropy of γSL. The dots in the grains mark vacancies. See

supplementary materials for animations [9].
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Figure 3: The grain boundary (GB) thickness We (△) and the nucleus thickness W ∗ (�,©) as functions

of temperature. The points are results of molecular dynamics (MD) simulations. The GB thickness

increases from 0.5 nm at Tm to 0.75 nm at Tc. In (a) the lines are fits of the classical nucleation theory

(CNT) to the MD data; in (b) the lines are fits of the proposed model. Note the qualitative difference at

high temperatures.
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Figure 4: Nucleation barriers computed from the proposed model and classical nucleation theory

(CNT). The model predicts a critical temperature of superheating at which the barrier vanishes and

the boundary becomes unstable against melting. Note that CNT gives a finite barrier at all temperatures

and is not capable of predicting a critical temperature.


