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Molecular dynamics simulations demonstrate how a mechanically bistable single-walled carbon
nanotube can act as a variable-shaped capacitor with a voltage-controlled transition between col-
lapsed and inflated states. This external control parameter provides a means to tune the system so
that collapsed and inflated states are degenerate, at which point the tube’s susceptibility to diverse
external stimuli– temperature, voltage, trapped atoms – diverges following a universal curve, yield-
ing an exceptionally sensitive sensor or actuator that is characterized by a vanishing energy scale.
For example, the boundary between collapsed and inflated states can shift hundreds of Angstroms
in response to the presence or absence of a single gas atom in the core of the tube. Several po-
tential nano-electromechanical devices could be based on this electrically tuned crossover between
near-degenerate collapsed and inflated configurations.

PACS numbers: 61.48.De, 85.85+j, 85.35.Kt, 64.70.Nd

The equilibrium cross-sectional shape of a nanotube is
controlled by a competition between elastic and surface
energies. Sufficiently large-diameter tubes prefer the col-
lapsed state, which captures the surface energy of the
now-touching interior surfaces. Three distinct stability
regimes can be defined in terms of the radius of the in-
flated, cylindrical state: below R1 only the inflated state
is stable; between R1 and R2 the inflated state remains
stable, but the collapsed state is metastable; above R2

collapse is stable and inflation is only metastable1–6. In
the region of bistability above R1, transitions between
these two configurations can propagate down the axis of
the tube8,9. Here we show how the highly deformable
conductive sp2 sheet can act as a non-linear, variable-

shape capacitor wherein electrostatic interactions within
a charged tube shift R1 and R2 to favor the inflated state.
A tube can be tuned by external voltage to a critical point
at which the inflated and collapsed states are degenerate,
producing a divergent susceptibility to diverse external
stimuli and creating a regime of exceptionally sensitive
nonlinear nano-electromechanical response.

Consider an infinitely long single-walled tube of ra-
dius R wherein an external voltage U (relative to infin-
ity) imparts additional charge q onto the tube wall. We
model the covalent interatomic interactions of this system
with a Tersoff-Brenner potential10,11, the non-bonded in-
teractions with a Lennard-Jones term, and the electro-
static contribution via a screened Coulomb interaction
and charging energy. The parameters ǫ and σ of the

Lennard-Jones interaction φLJ(r) = ǫ
(

σ
r

)12−2ǫ
(

σ
r

)6
are

σ = 0.383 nm and ǫ = 2.39 meV12. Since the Lennard-
Jones term describes only long-distance non-bonded in-
teractions, we exclude sufficiently short interatomic dis-
tances (r < 0.3 nm) from the Lennard-Jones term, as is
standard practice. For computational efficiency, we ne-
glect non-bonded interactions for r > r0 nm and shift the
Lennard-Jones potential upward by a small term linear
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FIG. 1: Charge distribution over the collapsed configuration
of (20,20) tube, showing the accumulation of charge in the
bulbs. Dark blue and light green lines correspond to U = 1
and U = 2 V at ks = 0.1 nm−1, while black lines correspond
to ks = 0.05 nm−1 at U = 1 V.

in r so that the energy and force vanish at the cutoff dis-
tance5,7. In any real system, the induced charge on the
tube wall is screened by countercharges in the environ-
ment. In addition, coarse graining of the induced charge
onto atoms requires an empirical on-site Coulomb self-
interaction. Hence we introduce an on-atom self-energy
that is linear in the induced charge and use a Thomas-
Fermi screening at long distances:

4πǫ0φΣ(ri) = Aqi +
∑

j 6=i

qj

e−ksrij

rij

. (1)

The empirical parameter A = 7.8 nm−1 is fitted to results
when ks = 013, but the precise value of A has only mi-
nor effects on our main results. Thomas-Fermi screening
provides a reasonably accurate model of screening due to
e.g. an electrolyte. In 10−1 to 10−4 M NaCl solutions
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the Debye screening length varies from 30 to 1 nm14; we
use ks = 0.2, 0.1, 0.05 nm−1. The net electrostatic self-

interaction is EΣ = 1
2

∑N

i=1 qiφΣ(ri). At fixed applied
voltage U , the tube when collapsed holds less charge than
when inflated, yielding a contribution EQ = −qU due to
work against this external voltage. The total energy is
then a sum of covalent (ETB), non-bonded (ELJ), and
electrostatic (EΣ +EQ) contributions. The energy differ-
ences ∆E quoted below are always relative to the energy
of the corresponding inflated state at the same voltage,
so that ∆E = 0 corresponds to degeneracy. Equations
of motion (under periodic boundary conditions) are in-
tegrated with a Verlet algorithm, incorporating viscous
damping to relax to static equilibria.

A constant-voltage condition models a tube strongly
coupled to an electrode by e.g. a highly conductive
or ohmic contact; (a constant-charge condition could
model a tunneling contact, with a distinct type of
collapse/inflation transition dynamics described later).
When the tube is collapsed, the charge accumulates in
the bulbs, as shown in Fig. 1. To find the charge dis-
tribution, we write the potential φΣ(ri) given by (1) for
each atom 1 ≤ i ≤ N in the unit cell and solve the system
of self-consistent linear equations:

j=N
∑

j 6=i

qj

n=∞
∑

n=−∞

e−ksρijn

ρijn

+

qi

(

A +

n=∞
∑

n=−∞

′
e−ks|nL|

|nL|

)

= 4πǫ0φΣ(ri),

(2)

with respect to unknown charges qi at a fixed electrostatic
potential φΣ(ri) = U , where ρijn is the distance between
atoms i and j separated by n unit cells. The primed sum
omits n = 0.

Fig. 1 shows the excess charge per atom. As regions of
high curvature, the bulbs accumulate charge, more so at
higher voltages. More weakly screened charge distribu-
tions require less total charge to sustain a given voltage.
For strong screening, the on-site self-energy in Eqn. (2)
is more important compared to the inter-atomic interac-
tion, so the system becomes slightly more sensitive to the
empirical parameter A15.

The inflated state holds more charge than the collapsed
state at fixed voltage, therefore it has a higher capaci-
tance and is favored under increasing charge. The upper
panel of Fig. 2 depicts voltage-controlled shape transi-
tions for (20,20), (30,30) and (40,40) tubes. All three
systems are initialized to a collapsed state at U = 0; (col-
lapse is metastable for (20,20) or (30,30) and stable for
(40,40)). Charging not only favors the higher-capacitance
inflated state, but also decreases the barrier against in-
flation. At Ucrit(R) the kinetic barrier against inflation
disappears and the tube inflates. The inset in the fig-
ure depicts this transition for the (40,40) tube. As the
voltage increases, the bulbs expand and the flattened in-
terior shrinks. At Ucrit ≈ 39 V the tube snaps open.
The middle and lower panels of Fig. 2 demonstrate in-
fluence of the screening parameter ks on the energy ∆E
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FIG. 2: Upper panel: Net energy ∆E = ∆ETB + ∆ELJ +
∆EΣ + ∆EQ per unit length of (20,20), (30,30) and (40,40)
tubes as a function of the applied voltage U , where ∆E = 0
corresponds to the inflated state at the same voltage. Dis-
continuities correspond to abrupt transitions into the inflated
state. The inset shows changes of the shape of a (40,40) tube
under external voltage. Middle panel: ∆E for a (40,40) tube
when ks = 0.2, 0.1, 0.05nm−1. Lower panel: charge differ-
ence between the inflated and collapsed configurations for a
(40,40) tube; the near-linearity indicates that the end-state
tube shapes are relatively insensitive to charge (i.e. the ca-
pacitances of inflated and collapsed states are each roughly
constant across this range of voltage).

and charge difference ∆q correspondingly. The effect is
robust across a wide range of screening lengths. Of par-
ticular interest are the more modest voltages needed to
tune the system to the degeneracy point ∆E = 0, a con-
dition in which the system becomes exceptionally sensi-
tive to external perturbations, as described below. This
degeneracy and the resulting diverging response func-
tions are robust to variations in the empirical potential or
finite-temperature entropic contributions, since they arise
from fundamental geometrical characteristics: the com-
petition between elastic and electrostatic terms – which
favor high-symmetry structures with uniform curvature –
and surface energies – which favor low-symmetry struc-
tures with opposing surfaces in contact. Since a barrier
exists between the inflated and collapsed states of the ho-
mogeneous system, inflation is not reversible unless ap-
propriate boundary conditions are imposed, such as in
the “double pinned” tube discussed below. In addition,
we note that a real experimental system may show hys-
teresis due to charge (or dipole) trapping on the substrate
underlying the tube16,17.
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FIG. 3: Decomposition of the energy difference ∆E between
collapsed and inflated states for a charged (30,30) tube into
covalent/elastic (ETB), Lennard-Jones (ELJ), Coulomb (EΣ),
and charging (∆qU) contributions, all measured per unit
length for ks = 0.1nm−1.

Fig. 3 depicts the various contributions to ∆E (solid
line), the energy difference between collapsed and inflated
states, as functions of U for the (30,30) tube. The elastic
contribution (blue dashed line) is always positive, since a
uniform circular cross-section minimizes the total curva-
ture energy. Conversely, the Lennard-Jones contribution
(red dots) is always negative, since the collapsed state
allows closer approach of opposing surfaces. Since the
collapsed state has a lower capacitance, the Coulomb self-
energy ∆EΣ (pluses) is negative (at fixed voltage). The
charging contribution ∆EQ (triangles) associated with
motion of excess charge on or off the tube is positive,
due to the same difference in capacitance.

For tubes with R > R2, like (40,40), the external volt-
age can be tuned so that collapsed and inflated states are
degenerate, i.e. ∆E = 0. Since this Udegen < Ucrit, the
two states are separated by a barrier. If boundary con-
ditions that eliminate this barrier are imposed, then the
susceptibility against perturbations that favor collapse or
inflation will diverge at this critical voltage. For exam-
ple, a tube with R > R2 held inflated at one end and
collapsed at the other (as shown in Fig. 4) must contain
a transition region. The kinetic barrier between degen-
erate configurations is thereby eliminated. Such pinning
has already been produced experimentally, even in the
first paper on nanotube collapse1, since the rigid end-cap
of a tube holds the end of the tube open even after the
interior collapses. This pinned-open/pinned-closed con-
figuration provides many possible modes of device oper-
ation, which either operate around the degeneracy point
and at it.

Devices that operate around the degeneracy point:

By sweeping the applied voltage across Udegen, a dou-
bly pinned nanotube can act as a electrical-mechanical
transducer, transitioning between the two states shown
in Fig. 4. In actuator mode, the inflating tube could per-
form work over long axial distances (by pushing a load
along the axis) or short transverse distances (limited by
the tube diameter). Axial motions could couple to ei-
ther liquids inside the tube or solids attached to the tube
exterior. Reversing the transduction, the system could

FIG. 4: Schematic depicting the evolution of a double-pinned
tube from a mostly collapsed state at U < Udegen to a mostly
inflated state at U > Udegen.

also convert mechanical motion into charge, similar to
a piezoelectric sensor. Since the collapsed state has the
smaller capacitance, a charge ∆q will leave the tube when
a compressive load collapses the tube. For example, ap-
proximately 200 eV of work will collapse a 100 nm length
of a (40,40) tube held at U = 15 V (for ks = 0.1), pro-
ducing a charge signal of ∆q ∼ 30e, (Fig. 2) which is eas-
ily measurable22–24. Unlike piezoelectric crystals whose
fractional capacity to elongate ∆l/l is at most ∼ 10−3,
bistable nanotube devices – for axial transport – can have
a range of motion comparable to the length of the device.
The efficiency of this transducer varies considerably de-
pending on the operating voltage, but is comparable to
that of established piezoelectric actuators25.

The time response of these nonlinear nano-mechanical
systems is governed by the axial speed of the transition
front between collapsed and inflated states. This front
moves at v ∝

√
∆E8,9; in our system ∆E is proportional

to the voltage deviation from Udegen. For example, a
ten-volt swing away from Udegen for a (40,40) tube yields
∆Ea ∼ 2 meV per carbon atom; taking mC as a char-
acteristic mass, one obtains v ∼

√

∆Ea/mC ∼ 200 m/s.
A typical device dimension of 0.1 micron then implies
roughly GHz operating frequencies.

Devices that operate at the degeneracy point: Of
particular interest are devices designed to operate as close
to degeneracy as possible. Such a system is very sen-
sitive to external perturbations that upset the balance
between inflated and collapsed states. For example, a
gas trapped in the interior adds a PV term to the free
energy (tube buckling under hydrostatic pressure is dis-
cussed in8), so that equilibrium is obtained when the
gas pressure balances the energy density associated with
the volume change between collapsed and inflated states:
P = ∆E/∆A where ∆A is a change in the cross sec-
tion area and ∆E is measured per unit axial length; (this
simple analysis neglects fluctuations, which are discussed
later). For an ideal gas, one obtains the differential sen-
sitivity of the length x of the inflated portion to changes
in either atom number n or temperature T :

∆x = −nkB∆T

∆E
= −kBT∆n

∆E
. (3)

Tuning the voltage to Udegen, we obtain ∆x → ∞. A sin-
gle interior gas atom could shift the transition zone by a
substantial amount, limited by the precision with which
the energetics can be tuned. Expanding ∆E(U) around
U = Udegen for a (40,40) tube with ks = 0.1, we can ob-
tain the response functions to temperature (∆x/∆T ) or
atom number (∆x/∆n) as a universal family of curves
plotted in Fig. 5. These curves are interpretable as either
the sensitivity to temperature at fixed number of inte-



4

7.8 7.85 7.9 7.95 8
0

2

4

6
∆

x
 /
 ∆

T
  
 (

n
m

 /
 K

)

n = 180

 80 
 10 

T = 900  K

 400

 50

7.8 7.85 7.9 7.95 8
0

10

20

30

7.8 7.85 7.9 7.95 8
0

10

20

30

∆
x
 /
 ∆

n
  
 (

n
m

 /
 a

to
m

)

Voltage (V)

FIG. 5: Universal response function to temperature ∆x/∆T
(or atom number ∆x/∆n) for different number of encapsu-
lated atoms n (or temperature T ). The red dashed line marks
Udegen.

rior gas atoms or the sensitivity to atom number at fixed
temperature. Other external perturbations can also elicit
strong responses: for example, dramatic responses can be
anticipated to surface acoustic wave excitation, a nonlin-
ear version of the nanotube charge pumping that was pre-
viously examined26 for regular inflated tubes. Adsorbates
and variations in temperature27 or mechanical boundary
conditions provide additional experimental handles to tilt
the delicate balance between configurational states.

Collapsed-based nano-electromechanical devices could
also be operated in constant-charge mode rather than
constant-voltage mode, a distinction similar to that be-
tween constant-pressure and constant-volume. At con-
stant charge the qU term is absent but the inflated state
continues to be favored at higher charge per unit length.

Around the degeneracy point the system self-organizes
into a mixed collapsed/inflated state, with higher charge
density in the inflated section than in the collapsed one.
This charge bubble – a giant polaron of sorts – could
be subject to further experimental manipulation through
scanned probes or split gates.

Although huge, tunable responses to perturbations are
possible in this system, non-uniformities along the tube
will prevent perfect tuning and hence cut off the diver-
gent susceptibility. For example, voltage fluctuations of
δU = 10 mV are characteristic of nanotubes or graphene
on silica substrates28 (with more uniform environments
on alternative substrates29). An inhomogeneity of δU =
10 mV cuts off dX/dn at ∼ 18 nm/atom at T = 400
K. Thermal fluctuations should be particularly impor-
tant in this nanoscale, one-dimensional system. A simple
one-degree-of-freedom model (which assumes a constant
shape to the transition region) writes the energy of the
system as ∆Ex where x is the location of the collapse-
inflation transition, yielding

√

〈x2〉 − 〈x〉2 = kT
∆E

. Since
the system has only one characteristic length scale, the
same universal divergence results, with fluctuations in
the location of the collapse/inflation transition of the
same size as the increment in location induced by a sin-
gle additional interior gas atom (Eqn. 3b). This dis-
tance can be many nanometers and could be exploited
in fluctuation-based device modalities similar to those of
biological molecular motors.
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