
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Equivalence Principle and Gravitational Redshift
Michael A. Hohensee, Steven Chu, Achim Peters, and Holger Müller

Phys. Rev. Lett. 106, 151102 — Published 11 April 2011
DOI: 10.1103/PhysRevLett.106.151102

http://dx.doi.org/10.1103/PhysRevLett.106.151102


Equivalence Principle and Gravitational Redshift

Michael A. Hohensee,1, ∗ Steven Chu,1, † Achim Peters,2 and Holger Müller1

1Department of Physics, University of California, Berkeley, CA 94720, USA
2Institut für Physik, Humboldt-Universität zu Berlin, Hausvogteiplatz 5-7, 10117 Berlin, Germany

We investigate leading order deviations from general relativity that violate the Einstein equiva-
lence principle (EEP) in the gravitational standard model extension (SME). We show that redshift
experiments based on matter waves and clock comparisons are equivalent to one another. Consid-
eration of torsion balance tests, along with matter wave, microwave, optical, and Mössbauer clock
tests yields comprehensive limits on spin-independent EEP-violating SME terms at the 10−6 level.

Gravity makes time flow differently in different places.
This effect, known as the gravitational redshift, is
the original test of the Einstein Equivalence Principle
(EEP) [1] that underlies all of general relativity; its ex-
perimental verification [2–6] is fundamental to our confi-
dence in the theory. Atom interferometer (AI) tests of the
gravitational redshift [4, 6] have a precision 10,000 times
better than tests based on traditional clocks [3], but their
status as redshift tests has been controversial [7]. Here,
we show that the phase accumulated between two atomic
wavepackets in any interferometer equals the phase be-
tween any two clocks running at the atom’s Compton
frequency following the same paths, proving that atoms
are clocks. For a quantitative comparison between dif-
ferent redshift tests, we use the Standard Model Exten-
sion [8–11] (SME), which provides the most general way
to describe potential low energy Lorentz symmetry vio-
lating (thus EEP-violating) signatures of new physics at
high energy scales. We show that all EEP tests are sen-
sitive to the same five terms in the minimal gravitational
SME [9–11], and for the first time, comprehensively rule
out EEP violation in redshift tests greater than a few
ppm for neutral matter.

If two clocks are located at different points in space-
time, they can appear to tick at different frequencies, de-
spite having the same proper frequency ω0 in their local
Lorentz frames. For clocks moving with non-relativistic
velocities ~v1 and ~v2 in a weak gravitational potential
φi = −MG/|~ri|, the difference frequency is [12]
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The first term is the gravitational redshift, originally
measured [2] by Pound and Rebka in 1960, while the
second term is the time dilation due to the clocks’ rela-
tive motion. The redshift term can be isolated from the
time dilation if the clocks’ trajectories are known.

The state of each clock can be described by a time-
varying phase. If two clocks 1,2 are synchronized to have
identical phase ϕ0 = 0 at time t = 0, then their relative
phase δϕf ≡ ϕ1 − ϕ2 =

∫
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FIG. 1. Mach-Zehnder clock/atom interferometer. Two oth-
erwise freely falling clocks (or halves of an atomic wavepacket)
receive momentum impulses that change their velocity by
±vr. The dashed lines indicate trajectories without gravity.

specializing to a homogenous gravitational field so that
φ1−φ2 = ~g ·~r12, with ~r12 being the clock’s distance vector
and ~g the local acceleration of free fall. If the clocks
are freely falling, then their motion is an extremum of
their respective actions [12] Si =

∫
mcdτ ≈

∫
m[c2 +

φi − v2
i /2]dt. Thus δϕf is proportional to the difference

S1 − S2 in their extremized actions.
To clarify the equivalence between matter-wave and

clock comparison tests, consider two conventional clocks
that follow the two piecewise freely falling trajectories
indicated in Fig. 1. Initially, they are co-located and
synchronized with zero phase difference. Their phase dif-
ference is measured at t = 2T , when they are again co-
located and at rest with one another. In a uniform grav-
itational field, it can be shown that the relative phase
δϕf accumulated while the clocks are in free fall van-
ishes, as the redshift and time dilation contributions in
Eq. (2) are of the same magnitude ω0gvrT

2/c2 but oppo-
site sign [13]. The clocks acquire an additional phase δϕa
during each brief period ε of acceleration a near t = 0,
T , and 2T . Since the effects of gravity and acceleration
are equivalent in any local frame, δϕa can be calculated
using Eq. (2) with ~g replaced by ~a. The phase change of
one clock at vertical coordinate z relative to a stationary
reference at z = 0 due to an impulsive acceleration is

δϕa = ω0

∫ t+ε

t

dt

(
az

c2
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2c2

)
= ω0

vrz

c2
, (3)

where vr =
∫ t+ε
t

a dt is the clock’s change in velocity.
The kinetic term vanishes as ε → 0, so the total phase
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difference δϕ = δϕf +
∑
δϕa between the clocks is

δϕ = δϕf + ω0
vr
c2

(zC + zD − zA − zB) = ω0
vrgT

2

c2
. (4)

Calculation of the phase measured by a Mach-Zehnder
AI, such as employed by Müller, Peters, and Chu [4],
proceeds identically [13]: At t = 0, a pulse from two
counterpropagating lasers coherently divides an atomic
matter wavepacket of mass m and initial momentum ~p0

into a superposition of two different momentum states
~p0 and ~p0 + h̄~k. The states separate with velocity of
vr = h̄k/m as shown in Fig. 1. In free fall, the wavepack-
ets follow paths i which extremize their respective actions
Si while accumulating phase in their local rest frames at
the Compton frequency ωC = mc2/h̄. The total free evo-
lution phase is ϕi = Si/h̄, and just as before, δϕf = 0.
The atoms also acquire a phase shift of δϕL

i = ±kz each
time they interact with the lasers [13]. This motion-
dependent phase shift is identical to Eq. (3) after sub-
stituting vr = h̄k/m and ω0 = ωC . Thus the overall
phase difference δϕ acquired by matter waves in the AI
takes the same form and is calculated in the same way as
that accumulated between a pair of conventional clocks
oscillating at ωC that follow the same paths. This equiv-
alence holds for AIs of any geometry, since an arbitrary
path can be approximated to any desired accuracy by
piecewise freely falling paths punctuated by momentum
transfers. The case of atoms held stationary in traps may
be treated by Eq. (3) without taking ε→ 0. Thus atoms
are effectively clocks that oscillate at ωC .

Although they operate the same way, AI and con-
ventional clock tests of the gravitational redshift could
be sensitive to different physics beyond the Standard
Model. The Compton frequency depends primarily on
the physics of neutrons and protons, as these form the
bulk of the atom’s rest mass, whereas modern atomic
clocks are sensitive to the physics of bound electrons,
as we see below. A rigorous comparison between these
tests requires the use of a consistent, comprehensive, and
predictive phenomenological framework applicable to all
experiments. The minimal gravitational SME [8–11] is
just such a framework, and provides the most general
way to describe potential low energy Lorentz- and EEP-
violating signatures of new physics at high energy scales.
It preserves desirable features such as energy-momentum
conservation, observer Lorentz covariance, and renormal-
izability of the non-gravitational interactions, and is in
extensive use [14]. The SME is formulated from the stan-
dard model Lagrangian by adding all Lorentz- or CPT
violating terms that can be formed from known fields
and Lorentz tensors. Different EEP tests will couple to
different combinations of gravitational SME parameters.

Without loss of generality, we may choose coordinates
such that light propagates in the usual way through
curved spacetime. The effects of EEP violation are then
described by the α(āweff)µ and (c̄w)µν coefficients, which

vanish if EEP is valid. The superscript w takes the val-
ues e, n, p indicating the electron, neutron, and proton,
respectively. The motion of a test particle of mass mT,
up to O(c−3), is that which extremizes the action [9]

S =
∫
mTc

(√
−
(
gµν + 2c̄Tµν

)
dxµdxν

+
1
mT

(
aT

eff

)
µ
dxµ

)
, (5)

where (aT
eff)0 = (1− 2φα)(āT

eff)0, (aT
eff)j = (āT

eff)j , and for
composite particles with Ne electrons, Np protons, and
Nn neutrons,

(c̄T)µν =
1
mT

∑
w

Nwmw(c̄w)µν , (aT
eff)µ =

∑
w

Nw(aweff)µ.

(6)
The metric gµν may also be modified by particle-
independent gravity-sector corrections, as well as the
(c̄S)µν and (āS)µ terms in the action of the gravita-
tional source body. For experiments performed in the
Earth’s gravitational field, we may neglect such modifi-
cations as being common to all experiments. Here, we
focus on an isotropic subset of the theory [9] and thereby
upon the most poorly constrained flat-space observable
(c̄w)00 terms and the (āweff)0 terms, that are only de-
tectable by gravitational experiments [8, 11]. The other
c̄w− and āw− are respectively best constrained by non-
gravitational experiments, or enter the signal as sidereal
variations suppressed by 1/c and are neglected here.

Expanding Eq. (5) up to O(c−2), dropping constant
terms, and redefining mT → mT[1 + 5

3 (c̄T)00] yields
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∫
mTc2
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φ

c2
[
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)
0

]
− v2

2c2

)
dt,

(7)
where v is the relative velocity of the Earth and the test
particle. Thus, at leading order, a combination of

(
c̄T
)

00

and α
(
āT

eff

)
0

coefficients rescale the particle’s gravita-
tional mass relative to its inertial mass.

The (c̄w)00 also cause a position-dependent shift in
the binding energy of a composite particle. This shift
arises at O(c−4) in the expansion of Eq. (5), taking the
form v2φ (c̄w)00 [9]. Although negligible below O(c−4)
for the motion of a single elementary particle, compos-
ite systems bound by nuclear or electromagnetic forces
can develop large internal velocities that are largely in-
dependent of φ. The v2φ (c̄w)00 terms represent vari-
ations of the bound particles’ inertial mass, and thus
of the binding energy of the composite particle with
φ, with 1

mw → 1
mw

[
1 + 3φ+ 5

3 (c̄w)00 − 13
3 φ(c̄w)00

]
[9].

For clocks referenced to a transition between two bound
states, this manifests as an anomalous rescaling [9] of
the redshifted frequency by a clock-dependent factor of
1 + ξclock. Energy conservation requires variations in a
particle’s mass defect be balanced by a rescaling of its
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TABLE I. Sensitivity of redshift experiments. The EEP-violation signal for each experiment is given as a linear combination
of SME-parameters. The observable for the Pound-Rebka Mössbauer test, e.g., is −1.1GeV−1α(ān

eff)0 − 1.1GeV−1α(āe+p
eff )0 +

(−0.34 + [−0.66])(c̄n)00 + (−0.34 + [−0.006])(c̄p)00 + 0.0002(c̄e)00, with āe+p
eff = āp

eff + āe
eff . The last column shows the measured

value and 1σ uncertainty. Signals dependent on models for ξ are in square brackets. Curly brackets mark expected limits.

Method α(ān
eff)0 α(āe+p

eff )0 (c̄n)00 (c̄p)00 (c̄e)00 limit

GeV GeV ppm

Mössbauer Effect [2] -1.072 -1.072 0.3358-[2/3] -0.3353-[0.006] 0.0001826 1000± 7600

H-maser on rocket [3] -1.072 -1.072 0.3358 0.3353-[0.67] 0.0001826-[1.3] 2.5± 70

Cs Fountain (proj.) [15] -1.072 -1.072 0.3358+[0.40] 0.34+[0.28] 0.0001826-[1.3] {2}
Bloch oscillations [4, 16] 0.1632 -0.1580 -0.05112-[0.0005] 0.04940+[0.0010] 0.00002690 3± 1

Bloch oscillations [6] 0.1492 -0.1439 -0.04673-[0.0006] 0.04500+[0.0008] 0.00002451 0.16± 0.14

Cs interferometer [4] 0.1881 -0.1835 -0.05890-[0.0004] 0.05739+[0.001] 0.00003126 0.007± 0.007

Rb interferometer [17] 0.1632 -0.1580 -0.05112-[0.0005] 0.04940+[0.001] 0.00002690 −0.004± 0.007
88Sr, 174Yb, 199Hg Clock -1.072 -1.072 0.3358+[0.0032] 0.3353+[0.0032] 0.0001826-[0.67] -

gravitational mass [21], producing an additional correc-
tion to its motion. To leading order, the gravitational
rescaling factor for an atom’s electronic binding energy
is ξbind

elec. = −(2/3) (c̄e)00 [9]. Scaled by the ratio of the
electronic mass defect to the total mass, this contributes
a fractional shift in the overall mass of an atom with Z
protons and A nucleons with average nucleon mass m̄ of
order Z2REξ

bind
elec./(m̄A) ∼ 10−7ξbind

elec. , which we neglect.
Contributions from the nuclear binding energy are much
larger, since the nuclear binding energy represents be-
tween 0.1 and 1% of an atom’s mass (see below).

We begin with an analysis of gravity-probe A (GP-
A). This experiment compared a hydrogen maser on the
ground to an identical one carried on a rocket along a
ballistic trajectory [3]. A first influence of EEP violation
in this experiment arises through a change in the motion
of an object used to map the gravitational potential φ
as a function of position. The gravitational acceleration
gT of a test mass mT is found by minimizing the action
Eq. (7),

gT = g
(
1 + βT

)
, βT =

2α
mT

(āT
eff)0 −

2
3

(c̄T)00, (8)

where (āT
eff)0 and (c̄T)00 are obtained from Eq. (6). The

test mass moves as if it were in the potential φ′ =
(1 + βT)φ. We need not consider anomalies in the mo-
tion of the rocket, as these are removed by continuous
monitoring of the rocket’s trajectory. EEP-violation also
causes a position-dependent shift of Hydrogen’s 3S1/2 to
1S1/2 hyperfine transition. The hyperfine splitting scales
with the electron mass me and the proton mass mp as
(memp)2/(me +mp)3. In analogy with a previous treat-
ment of the Bohr energy levels in hydrogen [9], the hy-
perfine transition varies linearly with φ as

ξhfs
H = −2

3
mp (2c̄e00 − c̄

p
00) +me (2c̄p00 − c̄e00)
mp +me

. (9)

Note that here it is not necessary to rescale the electro-
static interaction, as was done in [9], since it cancels in

the evaluation of ξ. Expressed in terms of the potential
φ′, the signal becomes

δf

f0
=
φ′s − φ′e

c2
(
1 + ξhfs

H − βSiO2
)
− v2

s

2c2
. (10)

The precise combination of (c̄w)00 and (āweff)0 bounded by
GP-A is given in Table I. For simplicity, we assume that
the potential φ′ has been mapped by test masses made of
silicon dioxide. This assumption is made throughout. A
similar analysis applies to ACES [15], a mission aiming
to place a Cs clock alongside a H-maser aboard the In-
ternational Space Station. In a rough hydrogenic model,
we estimate ξhfs

Cs using Eq. (9) by replacing (c̄p)00 with
(c̄

133Cs)00 from Eq. (6), and the proton massmp with that
of Cesium. Thus, a comparison of onboard Cs clocks to
those on the ground measures ξhfs

Cs − βSiO2 (Table I).
Null tests comparing clocks 1,2 with clock coefficients

ξ1,2 as they move together through a gravitational po-
tential can yield bounds [9] on ξ1 − ξ2. One such experi-
ment [18] resulted in ξhfs

H − ξhfs
Cs = (0.1± 1.4)× 10−6; one

using a Strontium optical clock and a Cesium microwave
clock [19] measured |ξhfs

Cs −ξ
opt
Sr | < 3.5×10−6, and one [20]

using an optical clock based on 199Hg+ vs. a microwave
Cs clock measured ξopt

Hg+ − ξhfs
Cs = (2.0± 3.5)× 10−6. Our

estimates of various optical clocks’ sensitivities assume
the clock transition energies scale as (mematom)/(me +
matom). The resulting decompositions of ξopt − βSiO2 in
Tab. I are equal to the precision displayed.

The Pound-Rebka experiment [2] measured the grav-
itational redshift of a 14.4 keV transition in stationary
57Fe nuclei. With Z = 26, 57Fe has an unpaired valence
neutron that makes a transition between different orbital
angular momentum states. Assuming the transition en-
ergy scales with the reduced mass of the neutron, the
Pound-Rebka experiment constrains (Tab. I)

ξMossb.
57Fe − βgrav = −2

3
m

56Fecn00 +mnc
56Fe
00

m57Fe
− βgrav. (11)
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TABLE II. Limits (×106), estimated by multivariate normal
analysis [22] using tests listed in Tab. I, torsion balance
tests [23], and relative redshift measurements [11, 18–20], with
1σ uncertainties. The index T replacing 0 indicates these lim-
its hold in the Sun-centered celestial equatorial frame [14].

α(ān
eff)T α(āe+p

eff )T (c̄n)TT (c̄p)TT (c̄e)TT

(GeV) (GeV)

4.3± 3.7 0.8± 1.0 7.6± 6.7 −3.3± 3.5 4.6± 4.6

Determination of the EEP-violating phase in an AI
proceeds along the same lines as the analysis leading
up to Eq. (4), substituting the EEP-violating action of
Eq. (7). To leading order, we obtain δϕ = (1+βAt)kgT 2.
This reproduces the result obtained in [4], with βAt given
by Eq. (8) specific to the atomic species. AIs are also
sensitive to variations in the atoms’ binding energy re-
sulting from changes to the inertial mass of their con-
stituent particles. Estimates of ξbind

nuc. are strongly model
dependent. We derive the values in Table I by treating
the nucleus as a Fermi gas confined in a square poten-
tial well of constant radius, holding fixed the last nu-
cleon’s binding energy. Thus we find that the AI con-
strains βAt + ξbind − (βgrav + ξgrav), where ξgrav is the
small contribution of the gravimeter’s binding energy to
its motion (Tab. I). Bloch oscillations [6, 16] are a spe-
cial case of an AI where the atoms at rest and bound the
same terms if they use the same species, see Tab. I.

We have demonstrated that the phase difference mea-
sured in any AI is exactly the same as the phase accumu-
lated by a pair of conventional clocks following the same
path, ticking at ωC . Experiments on different particles
or transitions offer windows on different sets of SME pa-
rameters. The sensitivities of various redshift tests to
the a− and c− coefficients of the SME are summarized
in Tab. I. In combination with two torsion balance tests
of the universality of free fall (UFF) [23], which limit
βBe +ξBe−βTi−ξTi and βBe +ξBe−βAl−ξAl, we obtain
simultaneous bound on all five EEP violation parameters
for normal, neutral matter, see Tab. II. This is the first
time that each has been bounded without assuming the
others are zero, closing any loopholes for renormalizable
EEP violations for neutral particles at O(c−2): Because
the SME is comprehensive [8–10], any additional anoma-
lies may require as yet unknown particles, violation of en-
ergy conservation, or other innovations. We have, how-
ever, assumed that particles mediating binding poten-
tials (e.g. W-bosons, π-mesons, etc.) satisfy EEP. AI
and UFF tests have the best sensitivity to meson-related
anomalies in the nuclear binding energy. Spin-dependent
anomalies are not observable by existing redshift tests,
and are a promising area for future study.

Redshift and UFF tests differ in their style of execu-
tion, as the former compare proper times whereas the lat-
ter compare accelerations, but the EEP violations they

constrain take the same form at O(c−2), consistent with
Schiff’s conjecture. EEP-violation entering at O(c−4),
however, may allow UFF to be valid at one point in a
gravitational field, but be violated elsewhere; A single
UFF test on the ground might not necessarily imply lo-
cal position invariance (LPI) [24], and might thus need
to be complemented by redshift measurements. Future
AIs may capable of constraining O(c−4) physics [25].
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