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When one splits spacetime into space plus time, the spacetime curvature (Weyl tensor) gets split
into an “electric” part Ejk that describes tidal gravity and a “magnetic” part Bjk that describes
differential dragging of inertial frames. We introduce tools for visualizing Bjk (frame-drag vortex
lines, their vorticity, and vortexes) and Ejk (tidal tendex lines, their tendicity, and tendexes), and
also visualizations of a black-hole horizon’s (scalar) vorticity and tendicity. We use these tools to
elucidate the nonlinear dynamics of curved spacetime in merging black-hole binaries.

PACS numbers: 04.25.dg, 04.25.D-, 04.30.-w, 04.25.Nx

Introduction.— When one foliates spacetime with
spacelike hypersurfaces, the Weyl curvature tensor Cαβγδ

(same as Riemann in vacuum) splits into “electric” and
“magnetic” parts Ejk = C0̂j0̂k and Bjk = 1

2
ǫjpqC

pq
k0̂ (see

e.g. [1] and references therein); both Ejk and Bjk are spa-
tial, symmetric, and trace-free. Here the indices are in
the reference frame of “orthogonal observers” who move
orthogonal to the space slices; 0̂ is their time component,
ǫjpq is their spatial Levi-Civita tensor, and throughout
we use units with c = G = 1.

Because two orthogonal observers separated by a tiny
spatial vector ξ experience a relative tidal acceleration
∆aj = −Ejkξk, Ejk is called the tidal field. And because a
gyroscope at the tip of ξ precesses due to frame dragging
with an angular velocity ∆Ωj = Bjkξk relative to inertial
frames at the tail of ξ, we call Bjk the frame-drag field.

Vortexes and Tendexes in Black-Hole Horizons.—For
a binary black hole, our space slices intersect the 3-
dimensional (3D) event horizon in a 2D horizon with
inward unit normal N; so BNN is the rate the frame-
drag angular velocity around N increases as one moves
inward through the horizon. Because of the connection
between rotation and vorticity, we call BNN the horizon’s
frame-drag vorticity, or simply its vorticity.

Because BNN is boost-invariant along N [2], the hori-
zon’s vorticity is independent of how fast the orthogonal
observers fall through the horizon, and is even unchanged
if the observers hover immediately above the horizon (the
FIDOs of the “black-hole membrane paradigm” [3]).

Figure 1 shows snapshots of the horizon for two identi-
cal black holes with transverse, oppositely directed spins
S, colliding head on. Before the collision, each horizon
has a negative-vorticity region (red) centered on S, and a
positive-vorticity region (blue) on the other side. We call
these regions of concentrated vorticity horizon vortexes.
Our numerical simulation [4] shows the four vortexes be-
ing transferred to the merged horizon (Fig. 1b), then re-

taining their identities, but sloshing between positive and
negative vorticity and gradually dying, as the hole set-
tles into its final Schwarzschild state; see the movie at
http://www.black-holes.org/headon05aa.html.

Because ENN measures the strength of the tidal-
stretching acceleration felt by orthogonal observers as
they fall through (or hover above) the horizon, we call it
the horizon’s tendicity (a word coined by David Nichols
from the Latin tendere, “to stretch”). On the two ends of
the merged horizon in Fig. 1b there are regions of strongly
enhanced tendicity, called tendexes; cf. Fig. 5 below.

An orthogonal observer falling through the horizon car-
ries an orthonormal tetrad consisting of her 4-velocity
U, the horizon’s inward normal N, and transverse vec-
tors e2 and e3. In the null tetrad l = (U − N)/

√
2

(tangent to horizon generators), n = (U + N)/
√

2,
m = (e2 + ie3)/

√
2, and m

∗, the Newman-Penrose Weyl
scalar Ψ2 [5] is Ψ2 = (ENN + iBNN)/2. Here we use sign
conventions of [6], appropriate for our (- +++) signature.

Penrose and Rindler [7] define a complex scalar cur-
vature K = R/4 + iX/4 of the 2D horizon, with R its
intrinsic (Ricci) scalar curvature (which characterizes the
horizon’s shape) and X proportional to the 2D curl of
its Háj́ıček field [8] (the space-time part of the 3D hori-
zon’s extrinsic curvature). Penrose and Rindler show
that K = −Ψ2 + µρ − λσ, where ρ, σ, µ, and λ are

FIG. 1. Vortexes (with positive vorticity blue, negative vortic-
ity red) on the 2D event horizons of spinning, colliding black
holes, just before and just after merger. (From the simulation
reported in [4].)
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spin coefficients related to the expansion and shear of
the null vectors l and n, respectively. In the limit of a
shear- and expansion-free horizon (e.g. a quiescent black
hole; Fig. 2a,b,c), µρ−λσ vanishes, so K = −Ψ2, whence
R = −2ENN and X = −2BNN . As the dimensionless
spin parameter a/M of a quiescent (Kerr) black hole is
increased, the scalar curvature R = −2ENN at its poles
decreases, becoming negative for a/M >

√
3/2; see the

blue spots on the poles in Fig. 2b compared to solid red
for the nonrotating hole in Fig. 2a. In our binary-black-
hole simulations, the contributions of the spin coefficients
to K on the apparent horizons are small [L2-norm . 1%]
so R ≃ −2ENN and X ≃ −2BNN , except for a time in-
terval ∼ 5Mtot near merger. Here Mtot is the binary’s
total mass. On the event horizon, the duration of spin-
coefficient contributions > 1% is somewhat longer, but
we do not yet have a good measure of it.

Because X is the 2D curl of a 2D vector, its inte-
gral over the 2D horizon vanishes. Therefore, positive-
vorticity regions must be balanced by negative-vorticity
regions; it is impossible to have a horizon with just one
vortex. By contrast, the Gauss-Bonnet theorem says the
integral of R over the 2D horizon is 8π (assuming S2

topology), which implies the horizon tendicity ENN is
predominantly negative (because ENN ≃ −R/2 and R
is predominantly positive). Many black holes have neg-
ative horizon tendicity everywhere (an exception is Fig.
2b), so their horizon tendexes must be distinguished by
deviations of ENN from a horizon-averaged value.

3D vortex and tendex lines—The frame-drag field Bjk

is symmetric and trace free and therefore is fully charac-
terized by its three orthonormal eigenvectors ej̃ and their
eigenvalues B1̃1̃, B2̃2̃ and B3̃3̃. We call the integral curves
along ej̃ vortex lines, and their eigenvalue Bj̃j̃ those lines’
vorticity, and we call a concentration of vortex lines with
large vorticity a vortex. For the tidal field Ejk the anal-
ogous quantities are tendex lines, tendicity and tendexes.
For a nonrotating (Schwarzschild) black hole, we show
a few tendex lines in Fig. 2a; and for a rapidly-spinning
black hole (Kerr metric with a/M = 0.95) we show ten-
dex lines in Fig. 2b and vortex lines in Fig. 2c.

If a person’s body (with length ℓ) is oriented along
a positive-tendicity tendex line (blue in Fig. 2a), she
feels a head-to-foot compressional acceleration ∆a =
|tendicity|ℓ; for negative tendicity (red) it is a stretch.
If her body is oriented along a positive-vorticity vortex
line (blue in Fig. 2c), her head sees a gyroscope at her feet
precess clockwise with angular speed ∆Ω = |vorticity|ℓ,
and her feet see a gyroscope at her head also precess
clockwise at the same rate. For negative vorticity (red)
the precessions are counterclockwise.

For a nonrotating black hole, the stretching tendex
lines are radial, and the squeezing ones lie on spheres
(Fig. 2a). When the hole is spun up to a/M = 0.95
(Fig. 2b), its toroidal tendex lines acquire a spiral, and
its poloidal tendex lines, when emerging from one polar
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FIG. 2. Four different black holes, with horizons colored by
their tendicity (upper two panels) or vorticity (lower two pan-
els), ranging from most negative (red) to most positive (blue);
and with a Kerr-Schild horizon-penetrating foliation (Exer-
cise 33.8 of [9]). (a) A nonrotating black hole and its tendex
lines; negative-tendicity lines are red, and positive blue. (b)
A rapidly rotating (Kerr) black hole, with spin a/M = 0.95,
and its tendex lines. (c) The same Kerr black hole and its
vortex lines. (d) Equatorial plane of a nonrotating black hole
that is oscillating in an odd-parity l = m = 2 quasinormal
mode, with negative-vorticity vortex lines emerging from red
horizon vortexes. The lines’ vorticities are indicated by con-
tours and colors; the contour lines, in units (2M)−2 and going
outward from the hole, are -10, -8, -6, -4, -2.

region, return to the other polar region. For any spinning
Kerr hole (e.g. Fig. 2c), the vortex lines from each po-
lar region reach around the hole and return to the same
region. The red vortex lines from the red north polar re-
gion constitute a counterclockwise vortex: the blue ones
from the south polar region constitute a clockwise vortex.

As a dynamical example, consider a Schwarzschild
black hole’s fundamental odd-parity l = m = 2 quasi-
normal mode of pulsation, which is governed by Regge-
Wheeler perturbation theory [10] and has angular eigen-
frequency ω = (0.74734 − 0.17792i)/2M , with M the
hole’s mass. From the perturbation equations, we
have deduced the mode’s horizon vorticity: BNN =
ℜ{9 sin2 θ/(2iωM3) exp[2iφ − iω(t̃ + 2M)]}. (Here t̃ is
the ingoing Eddington-Finklestein time coordinate, and
the mode’s Regge-Wheeler radial eigenfunction Q(r) is
normalized to unity near the horizon.) At time t̃ = 0,
this BNN exhibits four horizon vortexes [red and blue in
Fig. 2d], centered on the equator at (θ, φ) = (π/2, 1.159+
kπ/2) (k = 0, 1, 2, 3), and with central vorticities BNN =
−(−1)k39.22/(2M)2. From analytic formulae for Bjk and
a numerical Q(r), we have deduced the equatorial-plane
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FIG. 3. Head-on, transverse-spin simulation: (a) Shortly af-
ter merger, vortex lines link horizon vortexes of same polarity
(red to red; blue to blue). Lines are color coded by vortic-
ity (different scale from horizon). (b) Sloshing of near-zone
vortexes generates vortex loops traveling outward as gravita-
tional waves; thick and thin lines are orthogonal vortex lines.

red vortex lines and vorticities shown in Fig. 2d. As time
t̃ passes, the vortexes rotate counterclockwise, so they re-
semble water splayed out from a turning sprinkler. The
transition from near zone to wave zone is at r ∼ 4M
(near the outermost part of the second contour line). As
one moves into the wave zone, each of the red vortexes
is smoothly transformed into a gravitational-wave trough
and the 3D vortexes that emerge from the blue horizon
vortexes (concentrated in the dark region of this figure)
are transformed into gravitational-wave crests.

Vortex and Tendex Evolutions in Binary Black Holes
(BBHs).— We have explored the evolution of frame-drag
vortexes and tidal tendexes in numerical simulations of
three BBHs that differ greatly from each other.

Our first simulation (documented in [4]; movies
at http://www.black-holes.org/headon05aa.html) is
the head-on, transverse-spin merger depicted in Fig. 1
above, with spin magnitudes a/M = 0.5. As the holes
approach each other then merge, their 3D vortex lines,
which originally link a horizon vortex to itself on a sin-
gle hole (Fig. 2c), reconnect so on the merged hole they
link one horizon vortex to the other of the same polarity
(Fig. 3a). After merger, the near-zone 3D vortexes slosh
(their vorticity oscillates between positive and negative),
generating vortex loops (Fig. 3b) that travel outward as
gravitational waves.

Our second simulation (documented in [11]; movies at
http://www.black-holes.org/inspiral95aa.html) is
the inspiral and merger of two identical, fast-spinning
holes (a/M = 0.95) with spins antialigned to the orbital
angular momentum. Figure 4 shows the evolution of the
vorticity BNN on the common apparent horizon begin-
ning just after merger (at time t/Mtot = 3483), as seen in
a frame that co-rotates with the small horizon vortexes.
In that frame, the small vortexes (which arise from the
initial holes’ spins) appear to diffuse into the two large
central vortexes (which arise from the initial holes’ orbital
angular momentum), annihilating some of their vorticity.
(This is similar to the diffusion and annihilation of mag-
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FIG. 4. Insets: snapshots of the common apparent horizon
for the a/M = 0.95 anti-aligned simulation, color coded with
the horizon vorticity BNN . Graphs: BNN as a function of
polar angle θ at the azimuthal angle φ that bisects the four
vortexes (along the black curves in snapshots).

netic field lines with opposite polarity threading a hori-
zon [3].) Making this heuristic description quantitative,
or disproving it, is an important challenge.

Our third simulation (see movies at http://www.

black-holes.org/extreme-kick.html) is a variant of
the “extreme-kick” merger studied by Campanelli et al.
[12] and others [13, 14]: two identical holes, merging from
an initially circular orbit, with oppositely directed spins
a/M = 0.5 lying in the orbital (x, y) plane. In this case,
the vortexes and tendexes in the merged hole’s (x, y)
plane rotate as shown in Fig. 2d. We have tuned the
initial conditions to make the final hole’s kick (nearly)
maximal, in the +z direction. The following considera-
tions explain the origin of this maximized kick:

In a plane gravitational wave, all the vortex and tendex
lines with nonzero eigenvalues lie in the wave fronts and
make angles of 45 degrees to each other (bottom inset of
Fig. 5.) For vectors E (parallel to solid, positive-tendicity
tendex line) and B (parallel to dashed, positive-vorticity
vortex line), E×B is in the wave’s propagation direction.

Now, during and after merger, the black hole’s near-
zone rotating tendex lines (top left inset in Fig. 5) acquire
accompanying vortex lines as they travel outward into the
wave zone and become gravitational waves; and the rotat-
ing near-zone vortex lines acquire accompanying tendex
lines. Because of the evolution-equation duality between
Eij and Bij , the details of this wave formation are essen-
tially the same for the rotating tendex and vortex lines.
Now, in the near zone, the vectors E and B along the
tendex and vortex lines (Fig. 5) make the same angle with
respect to each other as in a gravitational wave (45 de-
grees) and have E × B in the −z direction. This means
that the gravitational waves produced by the rotating
near-zone tendex lines and those produced by the rotat-
ing near-zone vortex lines will superpose constructively
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FIG. 5. Bottom inset: tendex and vortex lines for a plane
gravitational wave; E × B is in the propagation direction.
Upper two insets: for the “extreme-kick simulation”, as seen
looking down the merged hole’s rotation axis (−z direction):
the apparent horizon color coded with the horizon tendic-
ity (left inset) and vorticity (right inset), and with 3D vor-
tex lines and tendex lines emerging from the horizon. The
tendexes with the most positive tendicity (blue; E) lead the
positive-vorticity vortexes (blue, B) by about 45o as they ro-
tate counterclockwise. This 45o lead is verified in the oscillat-
ing curves, which show the rotating BNN and ENN projected
onto a nonrotating ℓ = 2, m = 2 spherical harmonic.

in the −z direction and destructively in the +z direc-
tion, leading to a maximized gravitational-wave momen-
tum flow in the −z direction and maximized black-hole
kick in the +z direction. An extension of this reasoning
shows that the black-hole kick velocity is sinusoidal in
twice the angle between the merged hole’s near-zone ro-
tating vortexes and tendexes, in accord with simulations.

Conclusions.—In our BBH simulations, the nonlinear
dynamics of curved spacetime appears to be dominated
by (i) the transfer of spin-induced frame-drag vortexes
from the initial holes to the final merged hole, (ii) the
creation of two large vortexes on the merged hole asso-
ciated with the orbital angular momentum, (iii) the sub-
sequent sloshing, diffusion, and/or rotational motion of
the spin-induced vortexes, (iv) the formation of strong
negative ENN poloidal tendexes on the merged horizon
at the locations of the original two holes, associated with
the horizon’s elongation, and a positive ENN tendex at
the neck where merger occurs, and (v) the oscillation,
diffusion, and/or circulatory motion of these tendexes.

We conjecture that there is no other important dy-
namics in the merger and ringdown of BBHs. If so, there
are important consequences: (i) This could account for
the surprising simplicity of the BBH gravitational wave-
forms predicted by simulations. (ii) A systematic study
of frame-drag vortexes and tidal tendexes in BBH sim-
ulations may produce improved understanding of BBHs,
including their waveforms and kicks. The new waveform

insights may lead to improved functional forms for wave-
forms that are tuned via simulations to serve as tem-
plates in LIGO/VIRGO data analysis. (iii) Approxima-
tion techniques that aim to smoothly cover the full space-
time of BBH mergers (e.g. the combined Post-Newtonian
and black-hole-perturbation theory method [15]) might
be made to capture accurately the structure and dynam-
ics of frame-drag vortexes and tidal tendexes. If so, these
approximations may become powerful and accurate tools
for generating BBH waveforms.
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