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The change in energy of an ideal Fermi gas when a local one-body potential is inserted into the
system, or when the density is changed locally, are important quantities in condensed matter physics.
We show that they can be rigorously bounded from below by a universal constant times the value
given by the semiclassical approximation.
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A problem of long-standing interest in condensed mat-
ter physics is to give an effective estimate of the minimum
change in kinetic energy, δT (δρ), of an infinitely extended
ideal Fermi gas when the density is changed locally by a
fixed, specified amount δρ(r), i.e., the density is changed
from a constant ρ0 to ρ(r) = ρ0 + δρ(r). Note that δρ(r)
can be negative, as long as δρ(r) ≥ −ρ0, hence the word
“hole” in our title.

An equivalent problem is to calculate the minimum
change in total energy δE(V ) of the Fermi gas when a
local, one body potential V (r), of either sign, is added to
the kinetic energy Hamiltonian, i.e., −∇2 → −∇2+V (r),
where we use units such that ~ = 2m = 1. This rigorous
equivalence, recalled in (1) and (2) below, is well known
in density-functional theory.

In this Letter we will give an effective answer to both
questions by proving rigorously for dimensions D ≥ 2
that the well known semiclassical approximations are,
up to an overall constant, a lower bound for the kinetic
energy cost, as well as for the energy shift caused by
V (r). In the semiclassical approximation one associates
one quantum state with each box ∆p∆r in phase space
of volume 2π, but this calculation is qualitatively wrong
for D = 1 because of a singularity at the Fermi surface
related to the Peierls instability.

Plainly, there can not be an upper bound to δT (δρ) be-
cause we can always put the particles in high momentum
states whilst keeping ρ(r) fixed. The interesting compu-
tational question is the lower bound, i.e., the minimum
required payment for a perturbation of ρ0.

The literature on δE(V ) is mostly based on perturba-
tion theoretic ideas. Such calculations are valid in many
important cases but they do not bring the physics to
the foreground as sharply as the semiclassical formula
does. It is, therefore, important, conceptually and com-
putationally, to be able to view the physically trans-
parent semiclassical formula as yielding a rigorous, non-
perturbative bound. Moreover, the fact that the semi-
classical formulas are strictly local in position-space, and
hence additive over impurities, can make them useful for

density functional theory [1]. No multiple-scattering cal-
culation is needed here.

The two energy shifts, δT (δρ) and δE(V ), are con-
nected via a Legendre transform as

δT (δρ) = sup
V (r)

(
δE(V ) −

∫

R3

V (r)(ρ0 + δρ(r)) d3r

)
, (1)

δE(V ) = inf
δρ(r)

(
δT (δρ) +

∫

R3

V (r)(ρ0 + δρ(r))d3r

)
. (2)

If ρ0 ≡ 0 then ρ(r) = δρ(r) ≥ 0 and T (ρ) = δT (δρ). In
this case we are just creating a pile of N electrons with
density ρ(r) and with

∫
R3 ρ(r) d

3r = N or, equivalently,
we are filling the negative energy states of a potential V .
The 3D semiclassical (a.k.a. Thomas-Fermi) energies are

Tsc(ρ) = (3/5)(6π2/q)
2
3

∫

R3

ρ(r)
5
3 d3r, (3)

Esc(V ) = −(q/15π2)

∫

R3

V (r)
5
2

− d
3r, if ρ0 ≡ 0, (4)

where y± ≡ max(0,±y) ≥ 0 is the positive or negative
part of a number y, and q is the number of available spin
states per particle, which is 2 for unpolarized electrons.

When ρ0 > 0, the semiclassical quantities in 3D are

δTsc(δρ) = Tsc(ρ0 + δρ) − Tsc(ρ0) − µ

∫

R3

δρ(r) d3r

=
3

5

(
6π2

q

) 2
3
∫

R3

{
(ρ0 + δρ(r))

5
3 − ρ

5
3

0

− 5

3
ρ

2
3

0 δρ(r)

}
d3r, (5)

δEsc(V ) = Esc(V − µ) − Esc(−µ)

= − q

15π2

∫

R3

{
(V (r) − µ)

5
2

− − µ
5
2

}
d3r, (6)

where µ = (6π2ρ0/q)
2
3 is the chemical potential at den-

sity ρ0. Our main Theorems in 3D are

δT (δρ) ≥ 0.1279 δTsc(δρ) (7)
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for the change in kinetic energy, and

0 ≥ δE(V ) − ρ0

∫

R3

V (r) d3r

≥ 21.85

(
δEsc(V ) − ρ0

∫

R3

V (r) d3r

) (8)

for the change in energy when an arbitrary local potential
V (r) is inserted into the system. Similar results hold
for all D ≥ 2. Our bound (8) quantifies the validity
of first-order perturbation theory, since ρ0

∫
R3 V (r) d3r

is precisely the first-order term. In (5) note the (δρ)
5
3

dependence for large δρ, as in (3), but (δρ)2 for small δρ.
A lower bound in the ρ0 ≡ 0 case was provided by the

Lieb-Thirring inequality [2–5] for all D ≥ 1. For D = 3

T (ρ) = δT (δρ) ≥ 0.6724 Tsc(ρ), when ρ0 ≡ 0. (9)

It is widely believed that 0.6724 can be replaced by 1,
and there is continuing research in this direction. The
inequality T (ρ) ≥ K Tsc(ρ), as in (9), is equivalent to

E(V ) ≥ K−3/2 Esc(V ), when ρ0 ≡ 0. (10)

The inequality (9) was derived by first proving (10)
and then using the equivalence (1)–(2). Our attempt
to follow this route in the positive density case was not
successful. The situation changed when Rumin [6] found
a way to prove directly the kinetic energy bound (9). By
suitably modifying his method, we are now able to derive
a lower bound for δT (δρ), and consequently on δE(V ),
when ρ0 > 0.

Several papers, e.g. [7, 8], deal with this problem from
different points of view. In almost all cases, it has been
approached from the side of computing the energy shift
with a given potential V . The idea of computing the
shift caused by a given change in density does not seem
to have been widely considered.

If one fixes the particle number N in a very large box
and calculates the shift in energy caused by V , the answer
depends on the box shape and boundary conditions [7, 9].
We are able to avoid these problems and go directly to
the thermodynamic limit by fixing the chemical potential

µ and working in infinite space. Then we can look at
the unperturbed Hamiltonian H0 = −∇2 − µ or the per-
turbed one HV = −∇2−µ+V (r) and fill all the negative
energy states, i.e., all states below the Fermi level. No
box is required in our approach; these Hamiltonians are
defined on the whole space R3. The individual energies
are necessarily infinite but the difference is finite, as we
will explain.

To put this more precisely, we set ΠV , respectively Π0,
equal to the projections onto the negative spectrum of
HV and H0. The change in energy is then

δE(V ) = Tr (HV ΠV −H0Π0) (11)

where Tr denotes the trace.
To define the related kinetic energy shift, we consider

a one-particle density matrix γ(r, r′) (suppressing spin
indices for simplicity) and compute

δT (δρ) = inf
γ

Tr H0(γ − Π0). (12)

On the right side, we take the infimum over all density
matrices γ(r, r′) whose diagonal is γ(r, r) = ρ0 + δρ(r).
The Fermi statistics enters via the condition on γ: It is
known [4] that the necessary and sufficient condition for
a one-body γ to come from an N -body fermionic den-
sity matrix is that 0 ≤ γ ≤ 1, as an operator inequality.
The same condition is imposed in (12). Note that δT (δρ)
includes the chemical potential µ in its definition (since
H0 = −∇2−µ). With this choice, δT (δρ) is always posi-
tive, regardless of the sign of δρ(r). Formally, the reason
for this is that Π0 is the minimizer of TrH0γ among all
one-body density matrices γ.

Derivation of the lower bound (7): To simplify the
notation, we shall assume that q = 1 from now on.
The general case is analogous. Referring to Eq. (12),
we consider a density matrix γ(r, r′) whose density is
ρ0 +δρ(r). We have to study Q = γ−Π0, which we write
as Q = Q+++Q−−+Q+−+Q−+, where Q−− = Π0QΠ0,
Q−+ = Π0Q(1 − Π0), etc. In Fourier space this means

that Q̂−−(p,q) = Θ(p2 < µ)Q̂(p,q)Θ(q2 < µ), etc.,
with Θ the Heaviside step function. The total change
δρ(r) of the density equals the sum of the densities of
each of these terms, e.g., ρ++(r) = Q++(r, r), and so
on. Since 0 ≤ γ ≤ 1 in the sense of operators, we have
Q++ ≥ 0 and −Π0 ≤ Q−− ≤ 0, hence ρ++(r) ≥ 0 and
−ρ0 ≤ ρ−−(r) ≤ 0. However, ρ+−(r) = ρ−+(r) has no
sign a priori.

The kinetic energy of the diagonal terms Q±± can be
bounded using the method of [6]. We only explain the
bound on Q++ for brevity. The starting point is the
representation

Tr(H0Q
++) = Tr(|H0|Q++) =

∫ ∞

0

dE Tr(Q++
E )

=

∫

R3

d3r

∫ ∞

0

dE ρ++
E (r) (13)

where Q++
E = P≥EQ

++P≥E , ρ++
E (r) = Q++

E (r, r), and
P≥E is the spectral projection of |H0| = | −∇2 −µ| onto
energies ≥ E. By Schwarz’s inequality and Q++ ≤ 1,
√
〈ψ|Q++|ψ〉

≤
√

〈ψ|P≥EQ++P≥E |ψ〉 +
√
〈ψ|P≤EQ++P≤E |ψ〉

≤
√

〈ψ|P≥EQ++P≥E |ψ〉 +
√
〈ψ|P≤E |ψ〉

for any ψ. By taking ψ to be a δ-function we obtain√
ρ++(r) ≤

√
ρ++

E (r) +
√
r(E), where r(E) is the (spa-

tial) constant density of P≤E , which is easily found to
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be

r(E) =
1

6π2

(
(µ+ E)3/2 − (µ− E)

3/2
+

)
.

When we insert this bound on ρ++
E (r) into (13) we obtain

Tr(H0Q
++) ≥

∫

R3

F (ρ++(r)) d3r (14)

with

F (y) =

∫ ∞

0

dE
(√

|y| −
√
r(E)

)2

+
. (15)

The function F (y) is convex (because y 7→ (
√
|y| − C)2+

is convex) and behaves like the semiclassical counterpart
in (5) for small and large y. The kinetic energy of Q−−

satisfies the same inequality as (14). Using the convexity
of F we obtain the bound

Tr(H0Q) ≥ 2

∫

R3

F

(
ρ++(r) + ρ−−(r)

2

)
d3r. (16)

For a different bound we consider the off-diagonal
terms ρ+− = ρ−+. Calculating in momentum space and
using Schwarz’s inequality

(2π)
3
2

∫
|ρ+−(r)|2 d3r = (2π)

3
2

∫
ρ+−(r)Q+−(r, r) d3r

=

∫

p2≤µ

d3p

∫

q2≥µ

d3q ρ̂+−(p − q) Q̂(p,q)

≤
(∫

p2≤µ

d3p

∫

q2≥µ

d3q
|ρ̂+−(p − q)|2

|p2 − µ| 12 |q2 − µ| 12

) 1
2

(17)

×
(∫

p2≤µ

d3p

∫

q2≥µ

d3q |Q̂(p,q)|2|p2 − µ| 12 |q2 − µ| 12
) 1

2

.

The last factor is the sought after kinetic energy, as we
will explain below. The first square root factor on the
right side can be rewritten as

(∫

R3

Φ(k) |ρ̂+−(k)|2 d3k

) 1
2

, (18)

where

Φ(k) =

∫
p2≤µ

|p−k|2≥µ

d3p√
µ− p2

√
|p− k|2 − µ

. (19)

Our last task is to bound Φ(k) from above. As a func-
tion of k, Φ(k) can be shown to be monotone decreasing.
Thus, it attains its maximum at k = 0 where it has the
value Φ(0) = π2√µ. We deduce from (17) that

8π√
µ

∫

R3

|ρ+−(r)|2 d3r (20)

≤
∫

p2≤µ

d3p

∫

q2≥µ

d3q |Q̂(p,q)|2|p2 − µ|1/2|q2 − µ|1/2.

To understand the right side, we recall that Q = γ − Π0

where 0 ≤ γ ≤ 1. Hence

Q2 = (γ − Π0)
2 = γ2 − γΠ0 − Π0γ + Π0

≤ γ − γΠ0 − Π0γ + Π0 = Q++ −Q−−

and, therefore,

TrH0Q ≥ Tr |H0|Q2 ≥ 2 × (right side of (20)).

We deduce that

TrH0Q ≥ 16π√
µ

∫

R3

|ρ+−(r)|2 d3r. (21)

So far we have found two lower bounds, (16) and (21),
for the shift in kinetic energy δT (δρ) = inf TrH0Q, which
we average with coefficients t and 1 − t. Thus, δT (δρ) is
bounded below by
∫

R3

[
2tF

(
ρ++(r)+ρ−−(r)

2

)
+ 16π√

µ (1 − t)|ρ+−(r)|2
]
d3r,

(22)
where F is in (15). We must now give a lower bound
to the right side of (22) in terms of the total change
in density δρ(r) = ρ++(r) + ρ−−(r) + 2ρ−+(r). These
three quantities are not known separately but they do
satisfy the constraints that ρ++(r) + ρ−−(r) ≥ −ρ0 and
δρ(r) ≥ −ρ0. We then look for a 0 ≤ t ≤ 1 such that

2t F
(x

2

)
+

16π√
µ

(1 − t)y2

≥ κ
3

5

(
6π2

q

) 2
3
{

(ρ0 + x+ 2y)
5
3 −ρ

5
3

0 − 5

3
ρ

2
3

0 (x+2y)

}

holds for all x + 2y ≥ −ρ0 and all x ≥ −ρ0, and with
κ as large as possible. Solving this problem numerically
leads to t = 0.7267 and κ = 0.12797. This completes the
derivation of our first main result (7).

Using (2) we obtain the bound on the shift in energy
δE(V ) ≥ κ δEsc

(
κ−1V

)
. Finally we can use the fact

that δEsc(V ) − ρ0

∫
R3 V (r) d3r is a monotone decreasing

function of µ. This implies (23), and thence (8):

δEsc

(
1

κ
V

)
− ρ0

κ

∫

R3

V (r) d3r

≥ κ−5/2

(
δEsc(V ) − ρ0

∫

R3

V (r) d3r

)
. (23)

Extension to 2D: Our method can be generalized to
2D (indeed to any dimension except 1D). The result is

δT 2D(δρ) ≥ 0.04493 δT 2D
sc (δρ) (24)

for the change in kinetic energy, and

0 ≥ δE2D(V ) − ρ0

∫

R2

V (r) d2r

≥ 22.25

(
δE2D

sc (V ) − ρ0

∫

R2

V (r) d2r

)
(25)
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for the change in energy when a potential V (r) is in-
serted into the system. The 2D semiclassical func-
tions are T 2D

sc (ρ) = δT 2D
sc (ρ) = (2π/q)

∫
R2 ρ(r)

2 d2r and

δE2D
sc (V ) = −q/(8π)

∫
R2

(
(V (r) − µ)2− − µ2

)
d2r with

µ = 4πρ0/q.

Peierls Instability in 1D: In a 1D free Fermi gas, a
bound like (8) cannot hold, in general. When a potential
V (r) is inserted into the system at positive density ρ0,
the corresponding variation of the semiclassical energy is

δE1D
sc (V ) = − 2q

3π

∫ ∞

−∞

(
(V (r) − µ)

3/2
− − µ3/2

)
dr

with µ = (πρ0/q)
2. For small V (r), this gives

δE1D
sc (V ) − ρ0

∫ ∞

−∞
V (r) dr ≈ − q2

4π2ρ0

∫ ∞

−∞
V (r)2 dr.

On the other hand, second-order perturbation theory
[10] predicts that the true shift δE1D(V ), for small V , is

δE1D(V ) − ρ0

∫ ∞

−∞
V (r) dr

≈ − q2

2π

∫

k2≤µ

dk

∫

ℓ2≥µ

dℓ
|V̂ (k − ℓ)|2
ℓ2 − k2

= − q2

4π

∫ ∞

−∞
dk

|V̂ (k)|2
|k| log

2
√
µ+ |k|

|2√µ− |k|| . (26)

The logarithm diverges at |k| = 2
√
µ, hence the second-

order term can be made arbitrarily large whilst keeping∫
V (r)2 dr fixed. Thus there cannot be any lower bound

involving δE1D
sc (V ). This divergence in 1D is well-known,

and is related to the Peierls instability [10]. In higher
dimensions, the second-order approximation is bounded
(this follows from our bound (8)), but it is known to
have an infinite derivative at |k| = 2

√
µ, a fact that is

sometimes called the Migdal-Kohn anomaly [11].

Extension to positive temperature: The change in
free energy at temperature T = (kBβ)−1 and chemical
potential µ is

δF(V ) = −β−1 Tr
[
ln(1 + e−βHV ) − ln(1 + e−βH0)

]

with HV and H0 as before. Using the fact that ln(1 +
e−βE) = β2

∫∞
E (1 + eβλ)−2eβλ(λ− E) dE we find

δF(V ) = β

∫

R

eβλ

(1 + eβλ)2
δEµ+λ(V ) dλ

with δEµ+λ(V ) = −Tr [(HV − λ)− − (H0 − λ)−]. This
formula expresses the positive temperature energy shift
as a mixture of zero temperature energy shifts with differ-
ent chemical potentials – in fact, δEµ+λ(V ) is nothing but
the energy shift estimated before, but now with chemical
potential µ+ λ instead of µ. Therefore (8) leads to

0 ≥ δF(V ) − ρT

∫

R3

V (r)d3r

≥ −(21.85)
qβ

15π2

∫

R

dλ

∫

R3

d3r (1 + eβλ)−2eβλ

×
{

(V (r) − µ− λ)
5
2

− − (µ+ λ)
5
2

+ + 5
2 (µ+ λ)

3
2

+V (r)
}

with density

ρT =
q

(2π)3

∫

R3

(1 + eβ(p2−µ))−1 d3p .

Similar results hold for all D ≥ 2. This is a bound on
the change in free energy after insertion of a potential V ;
the corresponding version in terms of the density change
δρ can be obtained via a Legendre transform, as in (1).

Extension to periodic background potentials: Our
method also works here. The result depends on knowing
two things: the density of states close to the Fermi level,
µ, and the non-homogeneous background density ρ0(r)
for this µ. With these quantities in hand, the calculation
follows along the same lines as the one given here. There
are various possible energy-band scenarios and, for lack
of space, we defer the details to a forthcoming paper.

Conclusion: We show rigorously that the energy shift of
a Fermi gas, caused either by a local density perturbation
or by a local potential, is described, qualitatively, by a
semiclassical calculation.
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