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We study collisions between two strongly interacting atomic Fermi gas clouds. We observe exotic
nonlinear hydrodynamic behavior, distinguished by the formation of a very sharp and stable density
peak as the clouds collide and subsequent evolution into a box-like shape. We model the nonlinear
dynamics of these collisions using quasi-1D hydrodynamic equations. Our simulations of the time-
dependent density profiles agree very well with the data and provide clear evidence of shock wave
formation in this universal quantum hydrodynamic system.
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Fermi gases with magnetically tunable interactions
provide a new universal medium for studies of nonlin-
ear hydrodynamics in quantum matter. Near a collisional
(Feshbach) resonance, where the s-wave scattering length
diverges, a bias magnetic field can continuously tune the
cloud from a weakly interacting molecular Bose-Einstein
condensate to a weakly interacting Fermi gas, i.e., the
so-called BEC-BCS crossover. At resonance, a Fermi gas
is the most strongly interacting non-relativistic system
known [1]. It exhibits anisotropic hydrodynamic expan-
sion [2] or “elliptic flow,” in common with a quark-gluon
plasma [3, 4], a state of matter that existed microsec-
onds after the Big Bang and recently recreated in gold
ion collisions. Further, both systems have an extremely
low (quantum) viscosity [5] and nearly the same ratio of
shear viscosity to entropy density, just a few times the
conjectured lower bound for a perfect fluid [6].

In this Letter, we report the observation of shock
waves in a strongly interacting Fermi gas. Shock waves
are of recent interest in non-equilibrium electron Fermi
gases [7, 8] and occur generally in hydrodynamic sys-
tems when regions of high density move with a faster
local velocity than regions of low density, resulting in
increasingly large density gradients. In the absence of
dissipative or dispersive forces, this process leads to a
“gradient catastrophe,” where the density develops in-
finite gradients. We find that a gradient catastrophe is
avoided in a strongly interacting Fermi gas by dissipative
forces, which we model as arising from the local shear
viscosity. The data are well fit with a kinetic viscosity
10 h̄/m, where m is the atom mass [9].

In contrast, previous experiments on nonlinear hydro-
dynamics in quantum matter have focused on weakly in-
teracting Bose-Einstein condensates (BECs) [10]. There,
the mean field and quantum pressure (i.e., the Gross-
Pitaevski equation) lead to dispersive shock waves, char-
acterized by density oscillations [11–13]. For BECs, dis-
persive shock waves produce soliton trains [14], which

also have been observed and modeled for rapidly rotating
BECs [15] and for merging and splitting BECs [16]. Re-
cently, quantum turbulence has been observed in BECs,
by using oscillating potentials [17, 18].

Our experiments employ a 50:50 mixture of the two
lowest hyperfine states of 6Li, confined in a cigar-shaped
CO2 laser trap, and bisected by a blue-detuned beam at
532 nm, which produces a repulsive potential. The gas is
then cooled via forced evaporation near a broad Feshbach
resonance at 834 G [19]. After evaporation, the trap
is adiabatically recompressed to 0.5% of the initial trap
depth. This procedure produces two spatially separated
atomic clouds, containing a total of ≃ 105 atoms per
spin state. In the absence of the blue-detuned beam,
the trapping potential is cylindrically symmetric with a
radial trap frequency of ωx = ωy = ω⊥ = 2π × 437 Hz

and an axial trap frequency of ωz =
√

ω2

Oz + ω2

Mz =
2π × 27.7 Hz, where the axial frequency of the optical
trap is ωOz = 2π × 18.7 Hz and ωMz = 2π × 20.4 Hz
arises from curvature in the bias magnetic field. When
the repulsive potential is abruptly turned off, the two
clouds accelerate toward each other and collide in the
CO2 laser trap. After a chosen hold time, the CO2 laser
is turned off, allowing the atomic cloud to expand for 1.5
ms, after which it is destructively imaged with a 5 µs
pulse of resonant light.

Fig. 1 shows false color absorption images for a colli-
sion of the atomic clouds at different times after the blue-
detuned beam is extinguished. Two distinctive features
are clearly seen in this data: (i) the formation of a central
peak, which is well-pronounced and robust; (ii) the evo-
lution of this peak into a box-like shape with very sharp
boundaries, which propagates outward. The observed
large density gradients provide strong evidence of shock
wave formation in this system, where the sharp bound-
aries of the “box” are identified as shock wave fronts.
Numerical modeling of the hydrodynamic theory for one
dimensional motion is used to predict the evolution of
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FIG. 1: Collision between two strongly interacting Fermi gas clouds in a cigar-shaped optical trap. The clouds are initially
separated by a repulsive 532 nm optical beam. After the 532 nm beam is extinguished (0 ms), the clouds approach each other.
False color absorption images show the spatial profiles versus time. Initially, a sharp rise in density occurs in the center of the
collision zone. At later times the region of high density evolves from a “peak-like” shape into a “box-like” shape as the shock
front propagates outward. The well defined edges of the central zone in the last four images provide evidence of shock wave
formation in the strongly interacting Fermi-gas.

the atomic density, yielding profiles in good agreement
with the data.

For simplicity, we assume that the cloud is a strongly
interacting Fermi gas at zero temperature, i.e., we model
the cloud as a single fluid, consistent with our measure-
ments of the sound velocity [20]. In this case, the lo-
cal chemical potential has the universal form µ(n3D) =

(1 + β)ǫF (n3D), where ǫF (n3D) = h̄2

2m (3π2n3D)2/3 is the
ideal gas local Fermi energy corresponding to the three-
dimensional density n3D. Here, β = −0.61 is a universal
scale factor [2, 21, 22].

Neglecting viscous forces, the dynamics for the density
n3D(r, t) and the velocity field v(r, t), are described by
the continuity equation,

∂tn3D + ∇ · (n3Dv) = 0 (1)

and the Euler equation,

m∂tv + ∇

[

µ(n3D) + Utrap(r, z) +
1

2
mv

2

]

= 0, (2)

where we assume irrotational flow. Here Utrap(r) =
1

2
mω2

⊥
r2 + 1

2
mω2

zz2 is the confining harmonic potential
of the cigar-shaped trap.

To determine the initial density profile for the sepa-
rated clouds, we consider the equilibrium 3D density of
the Fermi gas in the trap, including a knife-shaped re-
pulsive potential Vrep(z). A blue-detuned laser beam is
shaped by a cylindrical lens telescope, i.e., the spot size is
small compared to the long dimension of the cigar-shaped
cloud and large compared to the transverse dimension.
Therefore, the repulsive potential varies only in the z
(axial) direction, Vrep(z) = V0 exp

(

−(z − z0)
2/σ2

z

)

. We
measure the width σz = 21.2 µm. The offset z0 = 5 µm
of the focus from the center in the long direction of
the optical trap is determined by a fit to the first den-
sity profile at 0 ms. Using the beam intensity and the

ground state static polarizability of 6Li at 532 nm, we
find V0 = 12.7 µK. The initial density profile is then

n3D(r, z) = ñ

(

1 −
r2

R2

⊥

−
z2

R2
z

−
Vrep(z)

µG

)

3

2

, (3)

where ñ = [(2mµG/h̄2)/(1 + β)]3/2/(3π2). In Eq. 3,

Rz,⊥ =
√

2µG/(mω2

z,⊥) and µG is the global chemical

potential, which is determined by normalizing the inte-
gral of the 3D density to the total number N of atoms in
both spin states. For N = 2×105, we find µG = 0.53 µK,
Rz = 220 µm, and R⊥ = 14 µm.

We note that µG/(h̄ω⊥) = 27, which means that the
typical number of filled energy levels of transverse quanti-
zation is large. Therefore, in this paper we use 3D hydro-
dynamics, Eqs. 1 and 2, and neglect effects of transverse
quantization even though they are more pronounced in
regions with lower density.

We model the dynamics for the one-dimensional mo-
tion in the long direction of the cigar-shaped trap. Just
after the blue-detuned beam is extinguished, the initial
1D density profile is determined by integrating n3D of
Eq. 3 over the transverse dimension r,

n1D(z) =
2π

5
R2

⊥
ñ

(

1 −
z2

R2
z

−
Vrep(z)

µG

)
5

2

. (4)

In the following we assume that during the evolution
the r dependence of Eq. 3 is preserved with the effective
size of the cloud being a slow function of z and t. We also
assume that the hydrodynamic velocity is along z axis
and does not depend on r. Then the subsequent time
evolution of the density follows the quasi-1D nonlinear
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hydrodynamic equations:

∂tn = −∂z (nv) (5)

∂tv = −∂z

(

v2

2
+ Cn

2

5 +
1

2
ω2

zz2

)

+ ν
∂z(n∂zv)

n
, (6)

where C = 1

2
ω2

⊥
l2
⊥

(

15π
2

l⊥
)2/5

(1 + β)3/5 and l⊥ =
√

h̄/(mω⊥) is the oscillator length. For brevity, we have
omitted the subscript 1D in Eqs. 5 and 6. The last “vis-
cosity” term in Eq. 6 is added phenomenologically to de-
scribe dissipative effects. For the strongly interacting 1D
fluid, ν is the effective kinematic viscosity, which has a
natural scale h̄/m. It is the only fitting parameter in the
theory [9].

For our previous sound wave experiments [20], we
observed nonlinear (amplitude dependent) propagation
without shock waves. By reducing the density perturba-
tion, we observed linear propagation. In this regime, one
can expand the differential equations (5) and (6) around
an equilibrium density configuration n0(z) in a harmonic
trap. Defining n(z, t) ≡ n0(z) + δn(z, t), the linearized
evolution equation for δn(z, t) (neglecting viscosity) is

∂2

t δn = ∂z

[

n0∂z

(

2C

5m
n
−

3

5

0
δn

)]

. (7)

With a flat background density, i.e., constant n0, with

µG = Cn
2/5

0
, Eq. 7 reduces to ∂2

t δn = c2∂2

zδn with the

sound velocity c =
√

2µG/5m, in agreement with predic-
tions [23, 24].

To compare the numerical solutions of Eqs. 5 and 6
with experiment, we note that the images are taken after
an additional free expansion for 1.5 ms, during which n1D

continues to slowly evolve in the axial potential of the
bias magnetic field, i.e., ωz → ωMz = 2π × 20.4 Hz. We
assume that during this expansion, the transverse density
profiles keep the same form, but the radius increases with
time. Then n3D(r, z) → n3D(r/b⊥, z)/b2

⊥
, where b⊥(t) is

a transverse scale factor, which obeys b̈⊥ = ω2

⊥
b
−7/3

⊥
,

with b⊥(0) = 1 and ḃ⊥(0) = 0 [2, 25, 26]. Since the 3D

pressure scales as n
5/3

3D , the 1D pressure scales as b
−4/3

⊥
.

This leads to a simple modification of Eq. 6: C → C(t) =

C/b
4/3

⊥
(t).

We numerically integrate Eqs. 5 and 6 using the mea-
sured values of the trap frequencies, atom number, and
the offset, depth, and width of the repulsive potential.
In the numerical simulation we create and load a den-
sity array as well as a velocity array with grid spacing
δz. The initial velocity is set to zero. The simulation
then updates the density and velocity field in discrete
time steps δt according to Eqs. 5 and 6. The 1D den-
sity profiles are calculated as a function of time after the
repulsive potential is extinguished. Fig. 2 shows the pre-
dictions and the data, which are in very good agreement.
For the simulation curves shown in the figure we use a

grid of 150 points. To check for numerical consistency,
we also employ a smoothed-particle-hydrodynamics [27]
approach, where the fluid is described by discrete pseudo-
particles. The results obtained indeed coincide with the
discretized-grid approach described above.

FIG. 2: 1D density profiles divided by the total number of
atoms versus time for two colliding strongly interacting Fermi
gas clouds. The normalized density is in units of 10−2/µm per
particle. Red dots show the measured 1D density profiles.
Black curves show the simulation, which uses the measured
trap parameters and the number of atoms, with the kinetic
viscosity as the only fitting parameter.

As shown in Fig. 2, we observe a dramatic evolution
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for the density of the gas. During the collision, a distinct
and stable density peak forms at the point of collision
in the center of the trap [28]. The density gradient at
the side of the central peak increases from its onset until
≈ 3 ms, at which point the gradient reaches its maximum
value. A large gradient at the edge of the collision zone
is maintained throughout the rest of the experiment. For
most of the data, we find relatively small deviations from
the simulation. The largest deviation occurs at 4 ms,
where the maximum density of the observed central peak
exceeds that of the simulation by ≃ 20%.

The steep density gradients observed in Fig. 1 suggest
shock wave formation. A deeper analysis of the simula-
tion curves provides additional evidence for shock waves.
Without any dissipation, the numerical integration of the
quasi-1D theory breaks down due to a “gradient catastro-
phe.” We find that the dissipative force in Eq. 6, which is
described by the kinematic viscosity coefficient ν, is re-
quired to attenuate the large density gradients and avoid
gradient catastrophe. For the data shown in Fig. 2, we
find that the best fits are obtained with the viscosity pa-
rameter ν = 10 h̄/m. For smaller values of ν, the simula-
tion produces qualitatively similar results to those shown
in the figure, only with steeper density gradients at the
edges of the collision zone. The dissipative term ∝ ν has
a relatively small effect on the density profiles, unless we
are in a shock wave regime, where the density gradients
are large. Hence, the numerical model suggests that the
large density gradient observed at the edge of the colli-
sion zone is the leading edge of a dissipative shock wave.

Our one-dimensional data for a strongly interacting
Fermi gas are very well described by a model based
on dissipative nonlinear quantum hydrodynamics. The
model employs an effective chemical potential µ1D =

C n
2/5

1D , assuming a single fluid near the ground state.
However, we expect that at higher temperatures, even
in the normal fluid regime, rapid collisional equilibrium
in the strongly interacting gas will produce nearly adia-
batic evolution with a three-dimensional pressure ∝ n5/3,
and hence an identical power-law dependence for the ef-
fective one-dimensional chemical potential. The radial
density variations observed in the two dimensional im-
age are not captured in the one-dimensional profiles, but
may be studied by expanding the numerical analysis to
three dimensions.

In conclusion, we have observed shock waves in a
strongly interacting Fermi gas, which provides an entirely
new regime for studies of nonlinear wave propagation in
cold quantum gases. Studies of nonlinear hydrodynamics
can now be done over a wide range of temperatures, in
both the superfluid and normal fluid regimes, and mag-
netic field control of the interaction strength enables con-
tinuous tuning from a dispersive BEC to a dissipative
Fermi gas. In future work, it will be interesting to study
the origin of the effective viscosity, the effects of trans-
verse quantization, and the higher derivative dispersive

terms in the stress tensor [7, 8, 11, 29], which become
important for large density gradients.
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