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Using Shubnikov-de Haas oscillations measured in URu2Si2 over a broad range in magnetic field
11 - 45 T, we find a cascade of field-induced Fermi surface changes within the hidden order phase
I and further signatures of oscillations within field-induced phases III and V [previously discovered
by Kim et al.; Phys. Rev. Lett. 91, 256401 (2003)]. A comparison of kinetic and Zeeman energies
indicates a pocket-by-pocket polarization of the Fermi surface leading up to the destruction of hidden
order phase I at ≈ 35 T. The anisotropy of the Zeeman energy driving the transitions in URu2Si2
points to an itinerant hidden order parameter involving quasiparticles whose spin degrees of freedom
depart significantly from those of free electrons.

The interplay between a lattice of local magnetic mo-
ments and a sea of itinerant carriers has been shown to
give rise to complex phase diagrams and the possibility
of unusual states of matter not realized in simple met-
als [1–3]. URu2Si2 has come to epitomize the richness of
the physics that can result in strongly correlated materi-
als [4], displaying multiple phase transitions as a function
of temperature, pressure and magnetic field [5, 6]. One
particularly odd aspect of URu2Si2 is that it undergoes a
robust thermodynamic phase transition into an ordered
phase below To ≈ 17.5 K [7] that lacks a microscopic
description despite numerous attempts at its characteri-
zation [8–14]. It has become to be known as the ‘hidden
order’ (HO) phase following the postulated existence of
similarly elusive hidden orders in the cuprates [15].

While some aspects of the ordering in URu2Si2 can be
understood from the perspective of local moments decou-
pled from the conduction sea [9, 16, 17], others − such
as the quasiparticles having effective masses many times
heavier than free electrons − indicates 5f -electron par-
ticipation in the Fermi surface [18, 19]. One possibility
gaining momentum in recent years is that the small pock-
ets result from Fermi surface reconstruction by a density-
wave HO [8, 20, 21]. If true, one should expect such
pockets to be particularly sensitive to the coupling of a
magnetic field H to the quasiparticle spin [22]. Evidence
for a field-induced Fermi surface change within the HO
phase has been reported [23, 24]. Yet experiments to
date have been performed over restricted intervals in H ,
leaving the driving mechanism unidentified.

In this paper, we report Shubnikov-de-Haas (SdH) os-
cillations in a high quality single crystalline sample mea-
sured over an broad range of field 11 ≤ µH ≤ 45 T, en-
abling previous Fermi surface studies performed over dif-
ferent ranges in field to be reconciled. We identify a cas-
cade of Fermi surface changes within the HO phase and
signatures of continued oscillations within field-induced
HO phases III and V. A comparison of the kinetic and

Zeeman energies of the pockets suggests a sequential po-
larization of the Fermi surface, culminating in the de-
struction of the HO phase at ≈ 35 T. The implications
for the HO parameter are discussed.

URu2Si2 is grown using the Czochralski technique, pro-
cessed by electrorefinement and cut to yield a single crys-
tal with a residual resistivity ratio of ≈ 400 between 2
and 298 K. The phase diagram is verified using contact-
less conductivity methods in pulsed magnetic fields [25]
to match that of prior studies [5]. For dilution refrig-
erator magnetotransport measurements at the National
High Magnetic Field Laboratory (NHMFL), the sample
is polished down to 3 × 0.3 × 0.1 mm3 (the latter di-
mension referring to the c-axis).

Figure 1 shows the magnetoresistance measured over a
broad range in magnetic field at ≈ 60 mK. While its over-
all form closely resembles that of earlier studies [23, 24],
the SdH oscillations found here are larger in amplitude,
exhibiting several distinct changes in the waveform as
a function of the applied magnetic field H . In phases
III and V the oscillations are greatly suppressed in am-
plitude, while above ≈ 39 T they become unobservable
owing to the ≈ 400-fold reduction in resistivity.

Changes in the waveform of the oscillations at ≈ 17, 24
and 29 T are reflected in their spectral content, provided
by Fourier transforms in Fig. 2. Oscillations in the low
field regime (IA in Fig. 2a) correspond closely to those
originally measured by Ohkuni et al [19], and more re-
cently measured by Hassinger et al. [26], over a similar
region in field, both with respect to the values of the
quantum oscillation frequencies F and fitted quasiparti-
cle effective masses m∗ (shown in Fig. 2 insets and sum-
marized in Table I). In region IB, above a characteristic
field of ≈ 17 T (at which the magnetoresistance deviates
from quadratic behavior [24]), we find the frequencies
to be shifted by a few tens of teslas − accounting for
the differences in frequency observed between Shishido
et al. [24] and Ohkuni et al.. More significant changes in
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FIG. 1: a, Magnetoresistance of URu2Si2 on the rising
and falling magnetic field (indicated by arrows) showing HO
phases I, III and V in which SdH oscillations are seen. 4 re-
gions (IA, IB, IC and ID) are identified within phase I, each
revealing different SdH frequencies (see Fig. 2). b, A com-
parison of the field Hp defined in Eqn. (1) at which each
pocket is expected to become spin-polarized (using the local

value of F and m∗) with 1/(1/H) in each region. Polarized
pockets (filled symbols) fall well below the solid line. Un-
polarized pockets (striped symbols) lie on or above the line.
Open symbols refer to harmonics, combination frequencies or
frequencies observed at µ0H > 29.4 T where the polarization
state can no longer be reliably determined owing to the non-
linear magnetization [27]. Note that the inverse field interval
in region IC is too short to resolve η.

F are then observed above ≈ 24 T (at which the slope of
the magnetoresistance increases [24]) within the region
denoted IC, thus accounting for the different frequencies
reported by Jo et al. [23]. Finally, the oscillations take on
a chaotic appearance beyond ≈ 29 T in region ID where
the magnetoresistance is negative. Our ability to resolve
separate frequencies in ID is limited by the range in 1/H
− hence the different labels.

IA IB IC ID

α, F2D 1050 (14) 1000 (14) 890 (17) 1200 (15)

β, F1D 450 (25) 490 (17) 560 (20) 510 (10)

γ 220 (7) 250 (25) 230 (20) -

η 90 (13) 120 (8) - -

ζ - 1510 (10) - -

TABLE I: Summarized values of F for each region within HO
phase I from Fig. 2, with m∗ shown in parenthesis.

FIG. 2: a - d, Fourier transforms (using a Hanning window) in
each HO phase I regime identified in Fig. 1a. The frequencies
in regions IA and IB are labeled according to Ohkuni et al. [19]
and Hassinger et al. [26], while ζ is newly identified. Insets
show estimates of m∗ for the various orbits and combination
frequencies obtained by fitting to A = A0X/ sinh X [32] where
X = 2π2m∗kBT/~eB. Harmonics and combination frequen-
cies are inferred from the values of F and m∗.

A clue as to the origin of the changes in F is provided
by the heavy masses of the quasiparticles compared to
the small sizes of the pockets. In the case of the η or-
bit observed in region IA, for example, F and m∗ imply
a band filling of εη = ~eF/m∗ ≈ 0.8 meV (assuming a
parabolic band) that is significantly lower than the Zee-
man energy scale h = 1

2
gµBµ0H ≈ 1.3 meV (for g ≈ 2)

at the lowest applied field of ≈ 11 T. Spin polarization of
the smallest pocket η in weak magnetic fields is therefore
implied (see schematic in Fig. 3).

For an effective g-factor g∗ specific to URu2Si2, we
turn to the angle-dependent de Haas-van Alphen mea-
surements of Ohkuni et al. [19] and their subsequent anal-
ysis in Ref. [33]. While the determination of the effective
g-factor in f -electron materials is often made complicated
by the spin-dependence of m∗ and scattering rate [34–36],
URu2Si2 proves to be a simple exception − 16 spin zeroes
are observed in the amplitude on rotating the field from
the c-axis by an angle θ [19], enabling the θ-dependence
of g∗ to be mapped to unprecedented detail [32]. Each
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FIG. 3: a, Schematic showing band polarization caused by
Zeeman splitting, resulting in the depopulation of the mi-
nority spin component above Hp defined in Eqn (1). b,
Polar plot of the measured θ-dependent effective g-factor
in URu2Si2 [19, 33] (black symbols) together with a fit to
g∗ = gz cos θ (black line), where gz = 2.6 (assuming 1

2
pseu-

dospins), and its comparison with an isotropic g = 2 (red
line). c, Schematic of the field-dependent cross-sectional ar-
eas of the up and down-spin components for a single pocket,
together with the ‘back projected’ quantum oscillation fre-
quency before F and after F +∆F polarization. d, The same
schematic in which the frequency shift ∆F ′ is reduced by ad-
ditional pockets acting as a charge reservoir.

spin zero (l) corresponds to an odd integer value (2l + 1)
of the product m∗g∗/me (where me is the free electron
mass) at which the two spin contributions destructively
interfere. On plotting the θ-dependence of g∗ obtained
after dividing this product by the measured θ-dependent
m∗ [19], g∗ can be seen to be extremely anisotropic com-
pared to that g ≈ 2 of free electrons. Such anisotropy
implies that the spin quantum numbers of the local 5f2

moments in URu2Si2 are incorporated into the Fermi sur-
face by their hybridization with the conduction sea [33].
While g∗ ≈ 0 when H lies in the planes, reflecting the
vanishing Pauli susceptibility at that orientation, it rises
to a large value g∗ ≈ 2.6 when H is aligned along the
c-axis (as in the current experiment) causing spin polar-
ization to become a significant factor. In Fig. 1b we use
g∗ ≈ 2.6 to estimate the field

µ0Hp =
2Fme

m∗g∗
(1)

at which each pocket is expected to become spin polar-
ized. On comparing Hp with the average inverse applied

magnetic field 1/(1/H) within each region, the frequency
shifts taking place on entering regions IB and IC can be
seen to be associated with the consecutive polarization
of pockets γ and β (with η already being polarized for
µ0H ≪ 11 T). The observed spin zeroes in URu2Si2 [19]
reinforce the validity of Eqn (1), implying linear Zeeman
splitting and spin-independent masses.

To understand how polarization affects the observed
frequencies, we turn to the schematic in Fig. 3c.
When H < Hp, the linearly Zeeman split pocket ar-
eas yield a constant ‘back projected’ frequency F =

−H2( ~

2πe
) ∂

∂H

(

Ak

H

)

= ( ~

2πe
)A0 [35], where A0 is the area

at H = 0 [28]. Once H > Hp, however, the areas no
longer change with H (for a single isolated pocket), giv-
ing rise to a back projected frequency F + ∆F ≈ 3

√
4F

for the majority spin component shifted from its original
value. Here, we assume ellipsoidal pockets whose k-space
volumes for a single spin are double those for two spins.

Polarization causes the chemical potential µ to vary
linearly with field above Hp. If there are additional pock-
ets present, as in URu2Si2, then their combined density-
of-states

∑

i γi (where γi ∝ n
√

Fm∗ [26] is the contri-
bution from individual pockets i = α, β, γ, η and ζ)
acts as a charge reservoir causing carriers to flow be-
tween pockets, weakening the field-dependence of µ. The
reservoir affects the F shifts in two ways. First, the
weakened change in slope of Ak versus H at Hp (see
Fig. 3d) reduces the shift of the pocket being polarized
to ∆F ′ ∼ ∆F ×

(

γi
P

i
γi

)

. Second, the remaining field-

dependence of µ causes all pockets to experience a change
in the slope of Ak versus H , causing all frequencies to
shift at Hp − the sign of the shift being opposite for op-
posing carrier types (with the shifts accumulating as each
pocket becomes polarized). The shift of α and β in oppo-
site directions is explained by their respective association
with electron and hole pockets [12, 26, 31]. On assuming
all pockets to occur once in the Brillouin zone such that
n = 1, with the exception of β for which n = 4 [12, 26],
we obtain ∆F ′ ∼ 20 T and 150 T for the polarization of
γ and β respectively. We can now understand why the
second frequency shift (between IB and IC) involving the
β pocket polarization is larger than the first (between IA

and IB) in Fig. 2− the β pocket represents a significantly
greater fraction of the total density-of-states.

The non-linear magnetic susceptibility [27, 29] and ac-
cumulating frequency shifts likely reduce the accuracy of
Eqn (1) in the limit µ0H → 35 T. On the other hand, the
irregular appearance of the SdH waveform, the downward
trend in Hp versus H (see Fig. 1b) and the significant
changes in the Hall effect [30] suggest that α becomes
polarized in region ID. It is therefore likely that the po-
larization of the majority of the Fermi surface precedes
the destruction of the HO phase I at ≈ 35 T [29]. Finally,
in Fig. 4 we turn to the oscillations in phases V and III
for which hysteresis (see Fig. 1a) [5] causes the field in-
terval within each phase to become dependent on the
field sweep direction. The spacing in 1/H between con-
secutive oscillations corresponds to dominant frequencies
of ∼ 2 kT and ∼ 3 kT in phases V and III respectively,
suggestive of a significant changes in Fermi surface topol-
ogy accompanying each metamagnetic transition [5, 27].
Lifshitz-Kosevich behavior of the oscillations is evidenced
by their temperature dependences (see Fig. 4).

In summary, we observe field-induced SdH frequency
changes occurring at several different fields (≈ 17, 24
and 29 T) within the HO phase and find these to be
consistent with a sequential spin polarization of the small
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FIG. 4: a and b, Oscillations in phases V and III, respectively,
at different temperatures as indicated (listed in order). The
insets show fits to estimate m∗, with the amplitude at each
temperature determined by Fourier analysis.

Fermi surface pockets in URu2Si2. Spin polarization of
the Fermi surface therefore appears to be the primary
factor responsible for the destruction of HO phase I at
≈ 35 T. More abrupt Fermi surface changes occur on
entering thermodynamically distinct phases III and V,
previously identified by Kim et al. [5].

The highly anisotropic effective g-factor of the quasi-
particles driving the transition(s) points to a HO param-
eter that is itinerant in nature, involving 5f -electron spin
degrees of freedom that are fully integrated into the Fermi
surface. The latter has important implications for the
HO, given the direct correlation between the degrees of
freedom of the itinerant quasiparticles and the degrees of
freedom subject to ordering within a density-wave pic-
ture. The possibility of a density-wave order parame-
ter involving unconventional spin or multipolar degrees
of freedom [16] is suggested by the close similarity of
the anisotropic effective quasiparticle g-factor to that ex-
pected for local non-Kramers Γ5 doublets [17].
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