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It is commonly believed that strongly interacting one-dimensional Fermi systems with gapless
excitations are effectively described by Luttinger liquid theory. However, when the temperature of
the system is high compared to the spin energy, but small compared to the charge energy, the sys-
tem becomes “spin-incoherent”. We present numerical evidence showing that the one-dimensional
“t-J-Kondo” lattice, consisting of a t-J chain interacting with localized spins, displays all the charac-
teristic signatures of spin-incoherent physics, but in the ground state. We argue that similar physics
may be present in a wide range of strongly interacting systems.
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The physics of interacting one-dimensional (1-d)
fermionic systems is described by a universal effective
theory called “Luttinger liquid” (LL) theory [1], in which
the low-energy physics is dominated by bosonic collective
excitations. The original fermions lose their identities as
low-energy excitations, giving rise to the phenomenon of
spin-charge separation, with distinct collective spin and
charge excitations (spinons and holons, respectively) that
have their own characteristic velocity and Hamiltonian.

Recently, a previously overlooked regime at finite tem-
perature has come to light–the “spin-incoherent Lut-
tinger liquid” (SILL) [4, 5]. If the temperature is higher
than the characteristic spin energy scale, but much
smaller than the Fermi energy [6], spins become totally
incoherent, effectively at infinite temperature, while the
charge sector remains very close to its ground state. This
regime is characterized by universal properties in the
transport, tunneling density of states, and the spectral
functions [4].

In an earlier work [7], we have described the spectral
properties of a 1-d t-J chain at finite temperature (cor-
responding to the strong coupling limit of the Hubbard
model), and understood the crossover from spin-coherent
to spin-incoherent regimes in terms of a transfer of spec-
tral weight. In this work we establish an analogy between
finite temperature SILL physics, and the ground state
properties of certain model Hamiltonians.

We motivate our results by establishing an analogy be-
tween (i) a thermal mixed state and (ii) a pure state in an
enlarged Hilbert space. This is the key idea behind the
so-called thermo field formalism [8]. For illustration pur-
poses, let us first assume that we have two spins S = 1/2,
that we put into a maximally entangled state

|I0〉 =
1√
2

[

| ↑, ↓̃〉 ± | ↓, ↑̃〉
]

, (1)

where the sign is irrelevant in the following treatment.
We shall assume the first spin is our “physical” spin,
while the one with a tilde is the “ancilla”, or impurity
spin. It is straightforward to see that the reduced density
matrix of the physical spin, after tracing over the ancil-

lary degrees of freedom, is the identity matrix. Thus, if
we assume that the ancilla acts as some sort of effective
thermal bath, the physical spin is at infinite tempera-
ture. It is easy to see that the maximally mixed state
for a number of spins can be rewritten as: |I〉 =

∏

i |I0i〉,
defining the maximally entangled state |I0i〉 of spin i with
its “ancilla”, as in Eq.(1). This construction allows one
to represent a mixed state of a quantum system as a pure

FIG. 1: (a) Proposed phase diagram of the t-J-Kondo model
with J = 0.05, as a function of the density and Kondo cou-
pling JK , obtained with exact diagonalization on small sys-
tems (full symbols) and DMRG (open symbols). The gray
shading corresponds to the FM phase, while the empty region
is PM. The dashed line is a guide to the eye. (b) Derivative of
〈Ht−J〉 with respect to the Kondo coupling JK , as explained
in the text, for a chain with L = 32, N = 24 fermions, and
Sz

tot = 4. (c) spin structure factor, and (d) momentum distri-
bution of a t-J-Kondo chain with L = 64 sites and N = 48
fermions, for different values of the Kondo coupling JK .
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state in an enlarged Hilbert space and lies at the core of
the imaginary-time DMRG [9].

With this picture in mind, it is natural to draw an
analogy to the physics of one-dimensional Kondo lattices
[10]. Let us first consider a particular model describing a
one dimensional chain of fermions with strong repulsive
on-site interaction U , the t-J model:

Ht−J = −t
L

∑

i=1,σ

(

c†iσci+1σ + h.c.
)

+J
L

∑

i=1

(~si·~si+1−
1

4
nini+1),

(2)
with the implicit constraint forbidding double-occupancy.
Here, c†iσ creates an electron of spin σ on the ith site along
a chain of length L. The exchange energy J ∼ t2/U , and
we take the inter-atomic distance as unity. We express
all energies in units of the hopping parameter t.

In the J = 0 limit, the ground state of the t-J model
factorizes into the Ogata-Shiba wave-function [12], a
product of a fermionic wave function |φ〉, and a spin wave
function |χ〉

|g.s.〉 = |φ〉 ⊗ |χ〉. (3)

The first piece, |φ〉, describes the charge degrees of free-
dom, and is simply the ground state of a spinless non-
interacting tight-binding Hamiltonian. In this limit, the
spin states are degenerate and the dispersion is just a
non-interacting band ǫ(k) = −2t cos(k), but any finite
interaction will lift this degeneracy and give the spin de-
gree of freedom some dispersion. Fig.1 in Ref.[7] shows
the spectrum the t− J chain with, J/t = 0.05.

Now it is easy to construct a generalization of the
Ogata-Shiba wave-function to describe the system at in-

finite spin temperature. All we have to do is to add spin
ancillas, and replace the spin component in Eq.(3), by the
corresponding maximally entangled state, |I〉 =

∏

i |I0i〉,
|ψSILL〉 = |φ〉 ⊗ |I〉. Thus, the charge will remain at
zero temperature, while the spin component will be ef-
fectively at infinite temperature! This state is describing
the spin-incoherent regime.

Now, leaving the ancillas aside for a moment, let us
return to the original model and construct the full “t-J-
Kondo” Hamiltonian by adding localized impurities in-
teracting with the conduction fermions via an antiferro-
magnetic exchange, JK :

H = Ht−J + JK

L
∑

i=1

~si · ~Si, (4)

where ~si describes the conduction spins and ~Si the local-
ized spins with Ht−J given in Eq.(2).

Curiously, the “t-J-Kondo” lattice has not received
much attention in the literature [13]. The “Kondo-
Hubbard” lattice (from which the “t-J-Kondo” model
can be derived) has been studied in Ref. [14]. A key

result is that its ground state for large Coulomb repul-
sion U has a total spin Stot = (L−N)/2, where L is the
length (number of sites) of the chain, and N is the total
number of conduction fermions. This is similar to the sit-
uation for large JK , and no Coulomb repulsion [10, 11].
However, Coulomb repulsion can drive the system into a
ferromagnetic (FM) ground state, even for small JK [13].

In the limit of large JK the fermions are strongly en-
tangled with the localized spins, and the excitations be-
come heavy polarons [15, 16]. We are interested in the
small J (large U) regime where the spinons are almost
dispersionless, and the coupling JK is small and of the
order of J . In this case, the interaction JK is nominally
a small perturbation, and one expects that the charge of
the conduction fermions will not be affected since it is
practically decoupled from the spin. Let us assume first
that J = 0: an infinitesimal JK will pair the conduction
spins to the impurities. For sufficiently large JK ≫ t
the corresponding state can be described by a product
wave-function [11]:

|g.s.〉 = |φ〉 ⊗ |I〉 ⊗ |σ〉, (5)

where the charge component |φ〉 corresponds to pairs
moving in a background of unpaired polarized impuri-
ties |σ〉. The pairs have their conduction spin maximally
entangled to their impurity partner |I〉. By looking at
the left two terms of this wave-function, we can easily
identify the spin-incoherent state |ψSILL〉. Indeed, the
unpaired impurities do not play a role in the dynamics
of the conduction fermions. Thus, we have established
a rigorous analogy between the ground state of the t-J-
Kondo lattice in the J = 0 limit, and the spin-incoherent
state described by the Ogata-Shiba wave function at infi-
nite spin temperature. Notice, however, that the charge
excitation will have a gap for breaking a pair, that can
be exponentially small for small JK .

In the J = 0 limit, the system is FM for any finite
value of JK . However, for a finite value of J , one expects
that as the Kondo interaction JK is turned on, a para-
magnetic (PM) window will open. In Fig.1(a) we show
a schematic phase diagram of the model for J = 0.05,
as a function of the density n and Kondo coupling JK .
The data points correspond to the transition from a PM
state with Stot = 0 to a state with finite Stot[17, 18], cal-
culated with DMRG and exact diagonalization on small
systems with open boundary conditions. Interestingly,
our results suggest that the PM phase occupies a small
sliver separating two large FM regions. The study of this
phase diagram deserves further attention but remains out
of the scope of this work.

We expect that the ground-state in the FM region at
large JK will approximately be described by Eq.(5), while
in the small JK region the system will be in a crossover
regime: the localized spins will act as an effective spin
and thermal reservoir, by increasing the “spin tempera-
ture” of the conduction fermions and driving them spin-
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incoherent, in the ground state. Thus, the interaction JK

parametrizes an effective temperature for the conduction
electron spins. We note that this “temperature” will not
necessarily have a one-to-one correspondence with an ac-
tual temperature.

To illustrate this point we have calculated the ground
state for the Hamiltonian (4) using the DMRG method
[19]. We have picked the parameters J = 0.05, and
n = N/L = 0.75 to be able to compare with the finite-
temperature results of Ref.[7]. As a technical point,
we remark that unless othewise stated we work in the
Sz

tot = 0 subspace. Even though we have encountered a
paramagnetic window for JK ≈ 2J (see Fig. 1) [13], this
is not relevant to our interpretation of the results, as we
shall see below.

For JK = 0 the ground state is massively degenerate,
since all configurations of localized spins will have the
same energy. As we increase JK , this degeneracy is lifted,
but convergence is extremely difficult. In our calculations
we have retained up to 600 states. Once the ground state
wave function is determined, we can calculate the energy
of the conduction fermions as Et−J = 〈Ht−J〉, where
Ht−J is described by Eq.(2). We then define an effective
“specific heat” as the derivative dEt−J/dJK of the energy
with respect to our effective “temperature” JK , as shown
in Fig.1(b). In this case we have plotted the results for
L = 32, N = 24, and Sz

tot = (L−N)/2 = 4 to avoid level
crossings. We point out that the results for Sz

tot = 0 are
practically indistinguishable, meaning that the total spin
does not seem to affect the general behavior of the con-
duction fermions. These results should be compared to
those obtained in Fig.2 or Ref.[7] using time-dependent
DMRG in imaginary time [9]. The features are quali-
tatively the same: The flattened curve after the hump
indicates that all the spins have been thermally excited,
and have basically thermalized at a value of JK ≈ J . It is
noteworthy that this behavior reflecting a crossover be-
tween two different regimes remains hidden in the total
energy and only becomes apparent after the t-J contri-
bution is taken into account separately.

To explore the analogy to spin-incoherent systems fur-
ther, we have calculated the static spin structure fac-
tor S(k), and the momentum distribution function n(k)
for the conduction fermions, as a function of JK . In
Fig.1(c,d) we show our zero-temperature results for L =
64,N = 48, that should also be compared with their
finite-temperature counterparts shown in Figs. 3(a,b) of
Ref.[7]. Shown is the diagonal component of the spin-
structure factor. Again, the behavior is very similar and
the analogy is clear: In S(k) we see a peak at k = 2kF ,
with kF ≡ πN/2L, and a pronounced minimum at k = 0.
For small values of JK the magnitude of the peak de-
creases and the minimum at k = 0 increases. At temper-
atures of the order of T ≃ JK ≃ J , the spin structure
factor becomes essentially featureless, indicating that the
spins are effectively at “infinite” temperature. These fea-
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FIG. 2: Momentum resolved spectrum of a t−J-Kondo chain
of L = 32 sites, with J/t = 0.05 and density n = 0.75, cal-
culated with time-dependent density matrix renormalization
group method, showing a transfer of the spectral weight as JK

increases, toward a spectrum that resembles a spin-incoherent
Luttinger liquid at a crossover value of JK ∼ 0.05.

tures are also observed in the conventional Kondo lattice,
but in that case it corresponds to the formation of sin-
glets in the strong JK regime [20]. Note that for the range
of parameters corresponding to the PM regime in Fig.1,
a very small feature appears at k = π(1 − n), possibly
indicating a large Fermi surface.

The behavior of n(k) is even more enlightening. Again
we find the same features observed in a finite tempera-
ture t-J model: At small values of JK we see the typical
LL profile, with no discontinuities at the Fermi point and
a singularity at k = 3kF . We also notice that the values
n(kF ) and n(2kF ) are independent of JK within the ac-
curacy of our calculation, as observed in Ref.[7] (where
they are also independent of temperature). We see that
the inflection point in n(k) shifts from kF towards 2kF ,
indicating the onset of the spin-incoherent regime, un-
derstood as a shift from particles with spin dynamics to
particles that are effectively spinless [21]. This behavior
resembles the physics of the Kondo lattice model, where
the Fermi surface is enlarged by absorbing the local mo-
ments ~Si into the Fermi sea. However, it differs from it
in that this leads to a shift from kF = πN/2L to a new
value of π(N+L)/2L [22], different than the value of 2kF

that occurs generically in the spin-incoherent regime. We
believe that the large Fermi surface singularity is not seen
due to the fact that system is dominated by FM correla-
tions and spin-incoherent physics.
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To confirm that the features observed above indeed
correspond to a spin-incoherent regime at zero tempera-
ture, we have calculated the photoemission spectrum of
the model using the time-dependent DMRG method as
described in Ref.[3]. We have used the same parame-
ters as in Ref.[7] for the finite temperature calculations.
Our results for different values of JK are shown in Fig.2.
These spectra should be compared to those of the t-J
chain at finite temperature shown in Fig.4 of [7]. We
can see a remarkable correspondence between the finite-
temperature spectra, and the spectra of the t-J-Kondo
chain. We first notice a lack of spectral weight above
the Fermi level (whereas it is there in Ref. [7]), which
is to be expected since these are zero-temperature cal-
culations. We do not see an important change in the
bandwidth, which means that for these values of JK , the
interaction with the localized spins has a minimum ef-
fect on the fermion effective mass. The most noteworthy
feature is a transfer of spectral weight from the holon
and shadow bands in such a way that at higher values
of JK the spectrum resembles the dispersion for spinless
fermions. This is precisely the behavior expected from
a spin-incoherent Luttinger liquid, and is reinforced in
the FM regime at JK = 0.2. The apparent discretiza-
tion of the spectrum appears as a combination of two
effects: the convolution of the holon dispersion with the
relatively flat spinon dispersion, and the relatively small
size of the system considered here. One may argue that
since there is a level crossing at finite JK , these results
may correspond to ground states with different excita-
tions. However, we have repeated the calculations for
different Sz subspaces, always finding similar behavior,
irrespective of the ground state spin sector. Therefore,
we can assert with confidence that these observations ap-
ply generically to the model.

To summarize, we have presented numerical results
supporting our argument that in the small J regime,
the t-J-Kondo lattice may indeed display spin-incoherent
behavior in the ground state, with the interaction JK

parametrizing an effective temperature and the localized
spins acting as an effective thermal bath.

We believe that this behavior may be a generic fea-
ture of many quasi-1D strongly interacting system sys-
tems, such as t-J ladders. Preliminary results support
this assertion and will be presented elsewhere [24]. We
can extrapolate our argument to higher dimensions, as
well as heavy-fermion and multi-band systems [25]: The
observation of spin-charge separation in bulk systems, if
present, may be hindered by small interactions that may
wash out the characteristic signatures of the spin degrees
of freedom. Instead, one might only be able to see the
charge excitations, with spectral properties that would
resemble a gas of spinless fermions with a large Fermi
surface. Therefore, experimental efforts seeking evidence
of spin-charge separation may be more effectively focused
toward looking for evidence of spin-incoherent behavior.
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