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Pattern formation with trapped ions
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Ion traps are a versatile tool to study nonequilibrium statistical physics, due to the tunability
of dissipation and nonlinearity. We propose an experiment with a chain of ions, where dissipation
is provided by laser heating and cooling, while nonlinearity is provided by trap anharmonicity and
beam shaping. The dynamics are governed by an equation similar to the complex Ginzburg-Landau
equation, except that the reactive nature of the coupling leads to qualitatively different behavior.
The system has the unusual feature of being both oscillatory and excitable at the same time.
The patterns are observable for realistic experimental parameters despite noise from spontaneous
emission. Our scheme also allows controllable experiments with noise and quenched disorder.

PACS numbers:

Pattern formation is the emergence of structure in a
nonlinear medium far from equilibrium [1, 2]. This phe-
nomenon occurs in many settings, including fluids, chem-
ical reactions, plasmas, and biological tissues. In tra-
ditional pattern-forming systems, the collective behav-
ior is set by the material properties, and theoretical de-
scriptions are often phenomenological. For example, in
the Belousov-Zhabotinsky reaction, the concentrations of
chemical reagents oscillate in time and produce traveling
waves. It is a complicated reaction involving many inter-
mediate states and rate constants. Hence, it is difficult
to experimentally control the behavior of the system.

On the other hand, ion traps allow an unprecedented
level of control using optical and electrostatic forces and
have led to impressive experiments in quantum comput-
ing [3, 4] and quantum simulation [5, 6]. In this paper,
we show how ions are also useful for studying pattern
formation. The advantage of using ions here is the abil-
ity to tune dissipation and nonlinearity in situ, thereby
having more experimental control and being able to see
different effects within the same system.

We show how patterns arise in a chain of ions driven far
from equilibrium. The collective dynamics are governed
by an equation similar to the complex Ginzburg-Landau
equation, which is one of the most studied equations in
physics. However, the presence of only reactive coupling
in the ion chain leads to novel behavior: while other sys-
tems are either oscillatory or excitable, the ion chain can
be both at the same time. Our scheme is also useful
for studying synchronization and Anderson localization.
Our work is motivated by recent experiments on the non-
linear dynamics of single ions: a phonon laser [7, 8] and
a Duffing oscillator [9]. The model studied here can also
describe an array of nanomechanical resonators [10, 11].

First we describe the proposed experimental setup. A
linear Paul trap uses an RF electric field for radial con-
finement and a DC field for axial confinement [3]. We
use a segmented trap, which has many DC electrodes in
order to create many trapping regions [12], and thereby
make a chain of ions, each in its own potential well. By
changing the DC voltages, one can tune the shape of the

FIG. 1: Chain of ions, each damped by a red-detuned beam
and excited by a blue-detuned beam. The blue beam is along
the ion chain, while the red beams are at an angle. The
intensity of the red beams is lowest at the trap center. Each
ion is in its own anharmonic DC potential well (not shown).

potential for each ion and thus control the nonlinearity
[13, 14]. Let x be the axial displacement of an ion from
its trap center, d the distance between trap centers, ωo

the harmonic trap frequency, and αo the coefficient of the
anharmonic quartic term in the trap potential.

We apply near-resonant laser beams to heat and cool
each ion (Fig. 1). When the laser frequency is above
resonance (blue-detuned), the ion feels an anti-damping
force due to the Doppler effect. When the laser frequency
is below resonance (red-detuned), the ion feels a damping
force [15]. We apply a blue-detuned beam in the axial
direction along the ion chain. For each ion, we also apply
a red-detuned beam at an angle φ with respect to the
trap axis. The red beam is shaped so that the intensity
is lowest at the trap center. The ion is then heated near
the center and increasingly cooled away from the center,
so the ion oscillates with a large amplitude, determined
by the balance of heating and cooling. The dissipation is
easily tuned by changing the beam intensity.

We use a singly-ionized, two-level atom of mass m with
a dipole transition of wavelength λ = 2π/k and linewidth
γ. Each red and blue beam has detuning −∆ω and +∆ω
and intensity IR and IB, respectively. Let Is be the sat-
uration intensity. All beams have the same polarization.

We use low laser intensities so that the ion is unsatu-
rated. We assume the radial motion is cooled near the
Doppler limit (due to the projection of the red beams),
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so that the Doppler shift is due mainly to the axial mo-
tion. For mathematical convenience, we use counter-
propagating beams (but in practice one would use single
beams). The total optical force on an ion is [7],

8~k2γ3∆ω

(γ2 + 4∆ω2)2

(

−
IR

Is
cos2 φ +

IB

Is

)

ẋ , (1)

under the additional assumptions k|ẍ| ≪ γ2/4 and
k|ẋ| ≪ ∆ω. To get position-dependent damping, we
choose to vary IR quadratically along the trap axis,

IR(x) =

(

x

ℓ cosφ

)2

IB , (2)

where ℓ is the characteristic length of the intensity gradi-
ent. The intensity profile does not need to take this form
or even be symmetric. In fact, a different profile may
lead to interesting higher-order terms in Eq. (5) [16].

The ions are coupled through Coulomb repulsion. If
the displacements are small relative to the inter-ion dis-
tance (ℓ ≪ d), the interaction is linear, and the free-space
coupling decreases with the cube of the distance. Numer-
ically, we find that interactions farther than the nearest
neighbor do not affect the overall dynamics much, so we
assume only nearest-neighbor interactions. The equa-
tions of motion are,

0 =
d2

dt2
xn + ω2

oxn + αox
3
n − µ

[

1 −
(xn

ℓ

)2
]

d

dt
xn

+
2kee

2

md3
[(xn − xn−1) + (xn − xn+1)] + χn(t),(3)

n = 1, . . . , N , where ke is the Coulomb constant, e is the
proton charge, µ is the damping coefficient,

µ =
8~k2γ3∆ωIB/Is

m(γ2 + 4∆ω2)2
, (4)

and χn(t) is the noise. In this scheme, the inherent
source of noise is spontaneous emission, since each emis-
sion causes a momentum kick ~k in a random direction.

We work in the regime where the nonlinearities and
interactions are small perturbations to the harmonic mo-
tion. We write xn(t) = 2ℓ Re[An(t)e−iωt], so that the
complex amplitude An encodes the slowly varying am-
plitude and phase of the underlying harmonic oscilla-
tions. In the Supplemental Material, we find the am-
plitude equation,

dAn

dt̄
= ib(−2An + An−1 + An+1) − (1 + ic)|An|

2An +

An + [ηR
n (t̄) + iσR

n (t̄)]An + [ηB
n (t̄) + iσB

n (t̄)] ,(5)

b =
2kee

2

νmd3ω2
o

, c =
3αoℓ

2

νω2
o

, ν =
8~k2γ3∆ωIB/Is

mωo(γ2 + 4∆ω2)2
,(6)

where t̄ = µt/2 is rescaled time, b is the coupling, and c
relates how an ion’s amplitude affects its frequency. We
stress that b and c are directly related to experimental
settings. In the absence of coupling, each ion oscillates
with amplitude |A| = 1, which corresponds to an ampli-
tude of 2ℓ in x. The noise functions are due to sponta-
neous emission and represent scattering by the red beams
(ηR,σR) and blue beams (ηB ,σB),

〈ηR
m(t̄)ηR

n (t̄′)〉 =
1

3
〈σR

m(t̄)σR
n (t̄′)〉 =

Hδ(t̄ − t̄′)δmn

cos2 φ
(7)

〈ηB
m(t̄)ηB

n (t̄′)〉 = 〈σB
m(t̄)σB

n (t̄′)〉 = Hδ(t̄ − t̄′)δmn (8)

H =
~(γ2 + 4∆ω2)

96mω2
oℓ

2∆ω
, (9)

where H is a dimensionless measure of the noise.
We now examine the spatiotemporal properties of

Eq. (5), ignoring the effect of noise for now. The equa-
tion is symmetric under the transformation b, c, An →
−b,−c, A∗

n. In the continuum limit, let An → A(X):

dA

dt̄
= A + ib

d2A

dX2
− (1 + ic)|A|2A . (10)

This is similar to the complex Ginzburg-Landau equation
(CGLE) [17], except that the coefficient of d2A/dX2 is
purely imaginary. This is because the Coulomb force is
reactive, while the CGLE includes both reactive and dis-
sipative interactions. This greatly modifies the behavior.

According to Eq. (10), a plane wave solution A(X, t̄) =
Fei(QX−ωt̄) satisfies F = 1 and ω = bQ2 + c. By lineariz-
ing around this solution [2], we find that the condition
for stability is bc ≥ 0, and as long as this is fulfilled, there
is no restriction on the wave number Q. Since Eq. (10) is
in the continuum limit, we expect long wavelength waves
(wavelength at least several ions) when bc ≥ 0.

When bc ≤ 0, it turns out that Eq. (5) allows short
wavelength waves that are not captured in the continuum
limit. Define Ãn = −A∗

n for even n and Ãn = A∗

n for odd
n and consider the continuum limit of the transformed
system. A plane wave Ã(X) = F̃ ei(Q̃X−ω̃t̄) satisfies F̃ =
1 and ω̃ = b(Q̃2 − 4) − c, and the stability condition for
long-wavelength waves is bc ≤ 0. A long wavelength wave
in Ã corresponds to a very short wavelength wave in A.

Therefore, Eq. (5) has stable plane waves for all values
of b and c: long wavelength for bc ≥ 0 and short wave-
length for bc ≤ 0. This behavior is different from the
CGLE, which has stable plane waves for bc > −1 and is
otherwise chaotic [17]. Another difference is that in the
CGLE, only a band of Q is stable.

However, boundary conditions affect the selection of
plane waves. With periodic boundary conditions, the
wave number (Q or Q̃) is a multiple of 2π/N . Open
boundary conditions are simpler to implement and are
equivalent to setting dA

dX = 0 at the boundaries. Thus
when bc > 0, the only allowed plane wave is the Q = 0
wave, in which the ions are uniformly in-phase (Fig. 2a).



3

(a)

80

90
re

sc
al

ed
 ti

m
e

t̄

(b)

80

90

oscillator index

(c)

 

 

10 20 30 40 50

87

90 −1.5

−1

−0.5

0

0.5

1

1.5

FIG. 2: Spacetime plot of chain of 50 ions with nearest neigh-
bor interactions and open boundaries. Re A is plotted using
the color scale in the side bar. A is the complex amplitude
of the underlying harmonic oscillations. (a) b = 1 and c = 1
showing uniform phase synchrony. (b) Same, but with the
expected noise from spontaneous emission. (c) b = 1 and
c = −1 showing anti-phase structure.

(This also occurs in the Belousov-Zhabotinsky reaction
in the absence of spatial inhomogeneities [2]). One can
induce Q 6= 0 waves by, for example, changing the trap
frequency ωo of one ion. The bc < 0 case is different,
because open boundary conditions mean setting Ã = 0 at
the boundaries. The final state is not a pure plane wave
but a more complicated structure, in which the ions are
almost uniformly anti-phase (Fig. 2c).

We now examine the dynamics of two coupled ions,
expanding on previous work [18, 19]. First write Eq. (5)
in terms of the real amplitudes r1, r2 and phase difference
∆θ = θ2 − θ1, where An = rne−iθn ,

d∆θ

dt̄
= (r2

2 − r2
1)

(

c +
b

r1r2
cos∆θ

)

(11)

dr1

dt̄
= (1 − r2

1)r1 + br2 sin ∆θ (12)

dr2

dt̄
= (1 − r2

2)r2 − br1 sin ∆θ . (13)

This system is symmetric under the transformations
{r1, r2, ∆θ → r2, r1,−∆θ}, {c, ∆θ → −c, π − ∆θ}, and
{b, ∆θ → −b, π + ∆θ}. There are fixed points at
(∆θ, r1, r2) = (0, 1, 1) and (π, 1, 1), corresponding to in-
phase and anti-phase motion. Another set of fixed points
corresponds to roots of a quartic polynomial of r2

1 ,

0 = (c2 − 1)2r8
1 − (c2 − 1)(c2 − 3)r6

1 − (c2 − 3)r4
1

−(b2 + 1)(c2 + 1)r2
1 + b2(b2 + 1) , (14)

which may be solved numerically. The bifurcation di-
agram is quite rich: as b and c change, saddle-node,
pitchfork, and Hopf bifurcations appear, disappear, and
change criticality. An example is shown in Fig. 3a. For
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FIG. 3: System of two oscillators with b = 1. (a) Bifurcation
diagram as c varies. There are supercritical pitchfork bifurca-
tions at (c, ∆θ) = (−1, 0) and (1, π). There are supercritical
Hopf bifurcations at (1.22, 2.82), (1.22, 3.47), (−1.22,−0.32),
and (−1.22, 0.32), which give rise to stable limit cycles (not
shown). Solid and dashed lines denote stable and unstable
fixed points, respectively. (b) A limit cycle at c = 1.4.

some values of b and c, there are supercritical Hopf bi-
furcations to stable limit cycles, in which the amplitudes
and relative phase oscillate (Fig. 3b). The system is at
least bistable for |c| < |b|, but certain values of b and c
have four stable fixed points.

As N increases, there are still in-phase (∆θ = 0) and
anti-phase (∆θ ≈ π) fixed points, although the region of
multistability in bc space shrinks. For |c| . |b|, there are
also multiple stable limit cycles, in which the entire chain
has the same average frequency or the chain is divided
into regions of different frequencies.

A large ion chain is excitable in a novel way. An ex-
citable medium has the property that the uniform state
is stable to weak perturbations, but a perturbation that
exceeds a threshold grows rapidly and then decays. For
example, when a small voltage is applied to a neuron’s
membrane, the neuron remains in the resting state. But
if the applied voltage is large enough, it triggers a pulse
of high voltage (an action potential), which travels along
the length of the cell. Usually, a medium is either oscilla-
tory or excitable [2]. For example, a neuron is excitable
but not oscillatory, since the membrane voltage does not
oscillate in the absence of an action potential. On the
other hand, the CGLE describes only oscillatory media
because there is no threshold. However, the ion chain
is both oscillatory and excitable at the same time. Sup-
pose that bc > 0 and the chain is in the Q = 0 state
(in-phase), with N large. We perturb the first ion A1

by δA. The Q = 0 state is linearly stable so a small
perturbation decays away. But if δA is greater than a
threshold, it generates a localized pulse of anti-phase os-
cillations (Fig. 4). The pulse travels across the system,
bouncing off the boundaries until it decays.

It is surprising that the ion chain is excitable, since
excitable media are usually reaction-diffusion systems.
Here, the pulse is made of an alternating phase struc-
ture instead of an increased chemical concentration. The
excitability can be intuitively understood from the fact
that when bc > 0 and |c| . |b|, both in-phase and anti-



4

re
sc

al
ed

 ti
m

e

oscillator index

t̄

25 50

0

50

100

150

200
5 10 15 20

0

5

10

15

20

FIG. 4: Spacetime plot of Re A for chain of 50 ions showing
an excitation pulse for b = 1 and c = 0.2. Perturbing the first
oscillator beyond a threshold generates a pulse of anti-phase
oscillation. The initial conditions were A1 = −1 and An = 1
for the rest. The right panel is a zoomed-in view. Color scale
is the same as in Fig. 2.

phase oscillations may be stable for small chains, while
only in-phase oscillation is stable for large chains. Thus,
a local region within a large chain may be anti-phase for
a short amount of time. We attribute the excitability to
the reactive nature of the coupling, since the CGLE is
not excitable. A mathematical description of this phe-
nomenon is left open for future work: it would be in-
teresting to calculate the threshold and pulse shape as a
function of b and c.

The patterns described above would be observable
above the noise from spontaneous emission for realistic
experimental settings that satisfy all the theoretical as-
sumptions. For example, the ion 24Mg+ has an S1/2 −
P3/2 dipole transition of wavelength λ = 279.6 nm and
linewidth γ/2π = 42 MHz. Letting ωo/2π = 100 kHz,
IB/Is = 0.05, ∆ω = 6γ, φ = π/4, ℓ = 30 µm, αo/4π2 =
1015 Hz2/m2, and d = 500 µm, one finds b = 1.0, c = 1.1,
and H = 5×10−4. Figure 2b shows that the Q = 0 state
is clearly visible above the noise. Also, since many ex-
periments are already using large-scale traps for quantum
information [12], it should be straightforward to imple-
ment our scheme with many ions.

In the experiment, one can measure the amplitude and
phase of An by recording when and where the ions scatter
photons [8, 9]. Changes in An occur on a time scale
t ∼ 1/µ, which is much slower than that of the harmonic
oscillation (∼ 1/ωo). Thus, one can observe dynamical
effects, such as limit cycles and excitation pulses. The
entire bc space can be explored by, for example, tuning
the parameters IB and αo.

It would be interesting to turn up the noise to see what
happens. It is known that adding noise to a spatially ex-
tended system may have nontrivial effects [20]. However,
it is usually experimentally difficult to make the noise

fluctuate not only in time but in space as well. In our
scheme, the noise for each ion is independent and may
be easily tuned by changing the detuning ∆ω in Eq. (9).
One could observe, for example, noise-induced transitions
between stable fixed points in a small chain.

Another interesting use of the tunability is to study
the effect of quenched disorder. A previous work studied
the mean-field version of Eq. (5) with random harmonic
frequencies ωo and found that as b and c change, the sys-
tem undergoes continuous and discontinuous phase tran-
sitions between the unsynchronized and synchronized
states [10, 11]. It would be interesting to study the lower-
dimensional versions. We note that synchronization of
disparate oscillators is an important topic throughout
science [21, 22]. Furthermore, when the variance of ωo is
small, Eq. (5) may be mapped via the Cole-Hopf trans-
formation to the Schrödinger equation for a particle in a
random potential [23, 24]. The resulting pattern forma-
tion reflects the phenomenon of Anderson localization.
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