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After a quench, observables in an integrable system may not relax to the standard thermal values,
but can relax to the ones predicted by the Generalized Gibbs Ensemble (GGE) [M. Rigol et al.,
PRL 98, 050405 (2007)]. The GGE has been shown to accurately describe observables in various
one-dimensional integrable systems, but the origin of its success is not fully understood. Here
we introduce a microcanonical version of the GGE and provide a justification of the GGE based
on a generalized interpretation of the eigenstate thermalization hypothesis, which was previously
introduced to explain thermalization of nonintegrable systems. We study relaxation after a quench
of one-dimensional hard-core bosons in an optical lattice. Exact numerical calculations for up to 10
particles on 50 lattice sites (≈ 1010 eigenstates) validate our approach.

PACS numbers: 02.30.Ik,03.75.Kk,05.30.Jp,67.85.Hj

Once only of theoretical interest, integrable models of
one-dimensional (1D) quantum many-body systems can
now be realized with ultracold atoms [1]. The possibility
of controlling the effective dimensionality and the degree
of isolation have allowed access to the quasi-1D regime
and to the long coherence times necessary to realize in-
tegrable models. Additionally, advances in the cooling
and trapping of atoms have led to increased interest in
dynamics following quantum quenches, where a many-
body system in equilibrium is exposed to rapid changes
in the confining potential or interparticle interactions.

In general, in integrable quantum systems that are far
from equilibrium, observables cannot relax to the usual
thermal state predictions because they are constrained
by the non-trivial set of conserved quantities that make
the system integrable [2]. Relaxation to non-thermal val-
ues were recently observed in a cold-atom system close to
integrability [3]. At integrability, it is natural to describe
the observables after relaxation by an updated statisti-
cal mechanical ensemble: the generalized Gibbs ensem-
ble (GGE) [4], which is constructed by maximizing the
entropy subject to the integrability constraints [5]. In
recent studies of integrable systems [4, 6, 7], the GGE
has been found to accurately describe various observables
after relaxation, but a microscopic understanding of its
origin and applicability remains elusive. In particular, an
important question remains: how is it that expectation
values after relaxation can be described by an ensem-
ble with exponentially fewer parameters than the size of
the Hilbert space? The full dynamics are determined by
as many parameters as the size of the latter. At a mi-
croscopic level, thermalization for non-integrable systems
can be understood in terms of the eigenstate thermal-
ization hypothesis (ETH) [8, 9], which, however, breaks
down as one approaches integrability [10].

This paper is devoted to the study of how generalized
thermalization, in the sense of relaxation to the predic-
tions of the GGE, takes place in integrable systems. An-

swering this question is important not merely because of
its relevance to the foundations of statistical mechanics in
integrable systems, but also because it has become nec-
essary to understand recent experiments with ultracold
gases in quasi-1D geometries. For integrable systems,
we compare the predictions of quantum mechanics with
those of various statistical ensembles. In particular, we
introduce a microcanonical version of the GGE, which
we use to show that relaxation to the GGE can be un-
derstood in terms of a generalized view of the ETH.

We study the dynamics following an instantaneous
quench of 1D hard-core bosons on a lattice, which is fully
integrable. The Hamiltonian is given by

Ĥ = −J
L−1
∑

i=1

(

b̂†i b̂i+1 + H.c.
)

+V (τ)

L
∑

i=1

(i−L/2)2n̂i (1)

where J is the hopping parameter; V (τ) gives the cur-
vature of an additional parabolic trapping potential for
atoms on a lattice with lattice constant a; b̂†i (b̂i) is the
hard-core bosonic creation (annihilation) operator; and

n̂i = b̂†i b̂i is the number operator. In addition to the stan-
dard commutation relations for bosons, hard-core bosons
satisfy the constraint b̂†2i = b̂2i = 0, which forbids mul-
tiple occupancy of the lattice sites. This Hamiltonian
can be mapped onto non-interacting fermions through
the Jordan-Wigner transformation [11], and the many-
body eigenstates can be constructed as Slater determi-
nants of the single-particle fermionic eigenstates [12].

We will focus on the behavior of the momentum dis-
tribution function, 〈n̂k〉 =

∑

l,m e−ik(l−m)〈ψ|b̂†mb̂l|ψ〉/L,
for system sizes ranging from N = 5 bosons on L = 25
lattice sites to N = 10 bosons on L = 50 lattice sites
(≈ 1010 eigenstates). Initially, we prepare the system
in the ground state |ψ0〉 of a 1D lattice with hard-wall
boundary conditions and an additional harmonic poten-
tial, with trapping strength V = V0. At time τ = 0, the
harmonic trap is turned off, V (τ ≥ 0) = 0, and the state
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FIG. 1. (a),(b) Momentum distribution of the initial state
(init), diagonal (DE), generalized microcanonical (GME),
generalized Gibbs (GGE), and the microcanonical (ME) en-
sembles. (c),(d) Relative difference of the GME, GGE and

ME from the DE. (e),(f) Conserved quantities, 〈În〉, in the
quenched state (identical to the DE), GME and ME. 〈In〉
are ordered in descending occupations in the quenched state.
L = 50, N = 10, δME = 0.05J , δGME = 0.8. (a),(c),(e)
ε = 0.72J , V0 = 0.029J . (b),(d),(f) ε = 1.52J , V0 = 0.125J .

|ψ(τ)〉 evolves under the influence of the final Hamilto-
nian. Hereafter, we refer to this state as it is immediately
after the quench as the “quenched state”. Its time evo-
lution is given by |ψ(τ)〉 =

∑

α cαe
−iEατ/~|α〉, where |α〉

are the energy eigenstates of the final Hamiltonian with
energies Eα, and cα = 〈α|ψ0〉 are the overlaps between
the eigenstates of the final Hamiltonian and the quenched
state. After relaxation, assuming the degeneracies in en-
ergy levels are irrelevant, the expectation value of an ob-
servable is expected to be given by the so called diagonal
ensemble (DE) [7, 9, 10]

〈Â〉DE = lim
τ→∞

1

τ

∫ τ

0

dτ ′〈ψ(τ ′)|Â|ψ(τ ′)〉 =
∑

α

|cα|
2〈α|Â|α〉.

We have checked numerically that, despite the integra-
bility of our model, nk relaxes to the DE prediction, with
small fluctuations around this result [13].

Figure 1 shows the momentum distributions, nk, be-
fore and after the quench, for two different initial trap
strengths, which correspond to different energies per par-
ticle, ε, after the quench. These results are compared
with those of various ensembles of statistical mechanics.
The microcanonical ensemble (ME) is one in which all
eigenstates in the relevant energy window have identi-
cal weights. Within the microcanonical ensemble, the
expectation value of a generic observable A is 〈Â〉ME =
N−1

ε,δME

∑

α,|ε−εα|<δME
〈α|Â|α〉, where δME is small, but

still much greater than the mean many-body level spac-
ing. Nε,δME

is the number of eigenstates in the energy

window |ε − εα| < δME. We have checked that the re-
sults reported here are nearly independent of the specific
value of δME. The GGE is a grand-canonical ensemble
that maximizes the entropy subject to the constraints
associated with non-trivial conserved quantities of the
quenched state. The density matrix takes the form [4]

ρ̂GGE = Z−1
G e−

P

λn În , ZG = Tr
[

e−
P

λn În

]

, (2)

where {În}, n = 1, . . . , L, are the conserved quanti-
ties. In our systems, these correspond to the occupa-
tion of the single-particle eigenstates of the underlying
noninteracting fermions to which hard-core bosons are
mapped, and {λn} are Lagrange multipliers fixed by the
initial conditions, λn = ln[(1 − 〈ψ0|În|ψ0〉)/〈ψ0|În|ψ0〉]
[4]. Observables within this ensemble are then computed

as 〈Â〉GGE = Tr
[

Â ρ̂GGE

]

following Ref. [12].

As a step towards understanding the GGE as well as
developing a more accurate description of isolated inte-
grable systems after relaxation, we introduce a micro-
canonical version of the GGE, which we call the gen-
eralized microcanonical ensemble (GME). Like the ME,
where states within a small energy window contribute
with equal weight, within the GME we assign equal
weight to all eigenstates whose values of the conserved
quantities are close to the desired values. The expec-
tation value of a generic observable within the gener-
alized microcanonical ensemble is given by 〈Â〉GME =
N−1

{In},δG ME

∑

α,δα<δGME
〈α|Â|α〉, where

∑

α,δα<δGME
is a

sum over eigenstates that are within the GME window
and N{In},δGME

is the number of states within that win-
dow and δα is a measure of the distance of eigenstate α
from the target distribution.

In order to construct the GME, we include eigenstates
of the Hamiltonian with a similar distribution of con-
served quantities which once averaged reproduce the val-
ues of the conserved quantities in the quenched state.
This approach is characterized by three ingredients: (i)
The ordered distribution (from largest to smallest) of the
conserved quantities in the DE, 〈In〉DE ≡

∑

α |cα|2In,α

[as in Figs. 1(e) and 1(f)], (ii) a target distribution of
the nonzero expectation values of the conserved quanti-
ties {I∗n∗

i

= 1}, where the values of n∗
i (i = 1, . . . , N) are

chose to describe the distribution In in a coarse grained
sense [15], and (iii) for each individual many-body eigen-
state, the distance from the target state, δα, which we

define as δα =
[

1
N

∑N
i=1 In∗

i
(ni,α − n∗

i )
2
]1/2

. Here ni,α

(i = 1, . . . , N) are the single-particle states occupied
in eigenstate α, and In∗

i
are the interpolated values of

〈In〉DE, evaluated at n∗
i . The definition of δα is not

unique and several variants that do not change our con-
clusions were also considered [13].

To better visualize the differences between the re-
sults of the various ensembles in Figs. 1(a) and 1(b),
we have plotted ∆〈nk〉stat = (〈n̂k〉DE −〈n̂k〉stat)/〈n̂k〉DE,
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where “stat” stands for ME, GGE, or GME in Figs. 1(c)
and 1(d). For weaker initial confinements (smaller ε -
Fig. 1(c)), the GME is practically indistinguishable from
the diagonal distribution. Both the GME and the GGE
accurately capture the tails of nk, while the thermal en-
semble does not. For tighter initial traps (greater ε -
Fig. 1(d)) all four ensembles are very similar (note the
scale), suggesting that nk in the final steady state is in-
distinguishable from that of the thermal state.

The close agreement between DE and ME results in
Fig. 1(b) raises the question: how can an integrable sys-
tem thermalize, given the constraints imposed by the
complete set of conserved quantities? We conjecture that
if the values of the conserved quantities in the quenched
state are similar to those of the ME, then the latter will
accurately describe observables after relaxation. This
may occur for a variety of quenches.

In Figs. 1(e) and 1(f), we plot the values of the con-
served quantities in the quenched state and compare
them with the expectation values of those quantities in
different statistical ensembles. (By definition, the dis-
tribution of conserved quantities in the DE and GGE
are identical to that of the quenched state.) Figure 1(e)
shows that the microcanonical values of the conserved
quantities are clearly different from the values in the
quenched state, while in Fig. 1(f) they are very similar.
This supports our conjecture above, and demonstrates
that thermalization can occur in integrable systems for
special initial conditions. Additionally, the GME repro-
duces the correct distribution of the conserved quantities
supporting the validity of our method for generating it.

To quantify the above observations, and to under-
stand what happens in the thermodynamic limit, we
have studied the difference between the predictions of
the DE and the statistical ensembles for different system
sizes. We compute the integrated relative differences,
(∆nk)stat =

∑

k |〈n̂k〉DE − 〈n̂k〉stat|/
∑

k〈n̂k〉DE, where
again “stat” stands for ME, GGE, or GME.

In Fig. 2(a), we plot (∆nk)ME as a function of the
final energy per particle, ε, for different lattice sizes,
L. To perform finite-size scaling, ε and the filling fac-
tor (ν = N/L = 0.2) are held constant as L changes.
Figure 2(a) shows that for ε . 1.3J the difference be-
tween the nk in the DE and the ME increases with
increasing L, indicating that the difference persists in
the thermodynamic limit. For ε & 1.3J , the oppo-
site behavior is observed. From our previous discus-
sion, one expects that (∆nk)ME should closely follow
the behavior of the integrated differences between the
conserved quantities in the quenched state and the ME,
(∆In)ME =

∑

n |〈In〉DE − 〈In〉ME|/
∑

n〈In〉DE. This is
seen by comparing Figs. 2(a) and 2(c), which leads us
to conclude that nk need not relax to the standard ther-
mal prediction, except when (∆In)ME becomes negligi-
ble. Qualitatively similar results were obtained in the
canonical ensemble [13].
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FIG. 2. (a) (∆nk)ME versus energy per particle of the
quenched state. δME = 0.05J . (b) (∆nk)GME vs ε, δGME =
0.8. (c) Integrated difference between the conserved quan-
tities in the quenched state and the ME, (∆In)ME. (d)
(∆nk)GGE vs ε. Inset: (∆nk)GGE vs L−0.73 for ε = 1.07J ,
where a fit to (∆nk)GGE = zL−γ gives γ = 0.73 ± 0.02.

On the other hand, in Fig. 2(b) one can see that the dif-
ferences between nk in the diagonal and generalized mi-
crocanonical ensembles are very small and decrease with
increasing system size, so that the former successfully
describes this observable after relaxation. In the case of
the GGE [Fig. 2(d)], (∆nk)GGE is in general larger than
(∆nk)GME, which is to be expected since the GGE is a
grand-canonical ensemble. As the system size increases
(∆nk)GGE → 0 as L−γ , where γ ≈ 0.73 [inset of Fig. 2(d)]
and slightly depends on the energy [13].

The question that remains to be answered is why the
generalized Gibbs and the generalized microcanonical en-
semble are able to describe the nk after relaxation, i.e.,
why 〈n̂k〉GGE = 〈n̂k〉GME = 〈n̂k〉DE ≡

∑

α |cα|2〈α|n̂k|α〉.
Note that whereas 〈n̂k〉GGE and 〈n̂k〉GME are entirely de-
termined by the L independent values of the conserved
quantities in the quenched state, 〈n̂k〉DE is determined
by the exponentially larger

(

L
N

)

values of the coefficients
cα.

To address this question, we perform a spectral de-
composition of 〈n̂k〉DE and 〈n̂k〉GME. Figure 3 displays
a coarse grained view of the weight which eigenstates
with a given zero momentum occupancy 〈n̂k=0〉α =
〈α|n̂k=0|α〉 contribute to the DE [Fig. 3(a)] and the GME
[Fig. 3(b)]. The correlation between the results in both
figures is apparent. However, it is not clear why the de-
tails contained in the overlaps cα are completely washed
out so that the DE and the GME results coincide, while
they are different from those in the ME. In the inset of
Fig. 3(a), we plot a histogram of the values of nk=0 for
the DE, GME and the ME. Clearly the histograms for the
DE and GME have a similar mean but different widths,
while the ME has a different mean and width [13].

Ultimately, one is interested in what happens in the
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2) and (b) the GME (fractional number of states
= number of states/total number of states) as a function of
eigenstate energy and 〈n̂k=0〉α. The sums are performed over
window of width δnk = 0.0067 , and δε = 0.035J . The hori-
zontal and vertical dotted lines are the expectation values of
n̂k=0 and ε in each ensemble. L = 45, N = 9, V0 = 0.036J ,
ε = 0.72J , δGME = 0.85. Inset in (a): Histogram of DE
weights (green), fractional number of GME states (blue) and
fractional number of ME states (black) summed over all ener-
gies. Bin width, δnk = 0.0067. Vertical lines give the mean,
〈n̂k=0〉 within each ensemble. Inset in (b): Fluctuations
of 〈n̂ka=0〉(•) and 〈n̂ka=2π/5〉(N) within the DE (green) and
GME (blue) as a function of inverse system size. ε = 0.72J .

thermodynamic limit. For each k, we define the width
of the distribution of 〈n̂k〉α for each ensemble as σk =
√

〈n̂2
k〉 − 〈n̂k〉2. The inset of Fig. 3(b), shows σk within

the DE and the GME versus L−1. The scaling is de-
picted for two k values and clearly shows that the widths
of both distributions vanish in the thermodynamic limit.
This demonstrates that the overwhelming majority of the
states selected by the DE as well as by the GME, which
have similar values of the conserved quantities, have iden-
tical expectation values of nk. This is why details of the
distribution of cα no longer matter as L increases. We
note that with increasing L, the number of eigenstates
contained in the generalized microcanonical window in-
creases exponentially, however, the ratio of the number
of states in the GME and the ME vanishes [13].

The findings above provide a generalization of the ETH
introduced previously to understand thermalization in
nonintegrable systems [8, 9]. The ETH states that the
expectation values of few-body observables in generic sys-
tems do not fluctuate between eigenstates that are close
in energy. Thus all eigenstates within a microcanoni-
cal window have essentially the same expectation values
of the observables, and one can say that thermalization
occurs at the level of eigenstates. As seen in Fig. 3,

〈n̂k〉α exhibits large eigenstate-to-eigenstate fluctuations
in our integrable system, showing that ETH is invalid.
However, by selecting eigenstates with similar conserved
quantities, ETH is restored, although in a weaker sense:
the overwhelming majority of eigenstates with similar
conserved quantities have similar values of nk. These
results pave the way to a unified understanding of ther-
malization in generic (nonintegrable systems) and its gen-
eralization in integrable systems. This opens many new
questions, such as whether the concepts of typicality [16]
and thermodynamics [17] can be generalized to isolated
integrable systems.
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