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The filamentary fungus Phycomyces blakesleeanus undergoes a series of remarkable transitions
during aerial growth. During what is known as the Stage IV growth phase, the fungus extends
while rotating in a counterclockwise manner when viewed from above (Stage IVa) and then, while
continuing to grow, spontaneously reverses to a clockwise rotation (Stage IVb). This phase lasts
for 24 - 48 hours and is sometimes followed by yet another reversal (Stage IVc) before the overall
growth ends. Here, we propose a continuum mechanical model of this entire process using nonlin-
ear, anisotropic, elasticity and show how helical anisotropy associated with the cell wall structure
can induce spontaneous rotation and, under appropriate circumstances, the observed reversal of
rotational handedness.
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Phycomyces blakesleeanus is the most studied phy-
comyces, a genus of fungi first reported in the early nine-
teenth century and described at length by the Belgian
biologist and cleric Jean-Baptiste Carnoy in 1870 [1]. Af-
ter a complex reproductive cycle this fungus emerges as
a strikingly large, single-celled, aerial hypha – known as
the sporangiophore – reaching sizes of up to 10cm long
(See Fig. 1). The organism, its rotating growth phases,
and remarkable tropic responses to various external stim-
uli has long been a source of fascination to biologists and
biophysicists alike [2–6].

Helical growth is the rotation of a structure as it ex-
tends axially and is observed in many different tubular
structures across the plant kingdom [7]. However, it is
not known whether this type of growth serves a biologi-
cal function or provides some mechanical advantage (as
hypothesized in the spiral grain of trees [8, 9]). Nev-
ertheless, elucidating the physical processes that lead
to helical growth provides insights into the fundamen-
tal problem of relating cell wall structure to growth and
form in plants. The physical explanation for helical
growth is based on the intuitive notion that a cylin-
der with a helically structured (cell) wall, under ax-
ial stress due to turgor pressure, should unwind in the
absence of an external axial moment. Hence, helical
growth can be viewed as the macroscopic mechanical
consequence of cell wall anisotropy. We refer to right-
handed growth (RH) when a point on top of the cylin-
der, viewed from above, turns counter-clockwise during
extension, and left-handed growth (LH) when the same
point turns clockwise.

Similar to other systems exhibiting helical growth, the
cell wall of the cylindrically structured sporangiophore of
Phycomyces blakesleeanus is anisotropic, essentially com-
posed of chitin microfibrils embedded in an elastic matrix
of amorphous material made out of chitosan and chitin
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FIG. 1: Left: The fungus Phycomyces blakesleeanus as drawn
by Carnoy [1]. The spherical dome on top of the tube is the
sporangium that contains the spores that are disseminated on
completion of the life cycle. Right: The 4 stages of growth
for the aerial hypha. In Stage IV helical growth reversal is
observed: Stage IVa exhibits right-handed growth and Stage
IVb presents left-handed growth. Stage IVb continues for up
to 2 days when the organisms can reach up to 10cm in height
(reproduced from [12]).

[10, 11]. After an initial aerial growth phase (Stage I)
and the development of the sporangium (Stages II and
III), axial growth resumes in Stage IV. A remarkable be-
havior is then observed [12]: in Stage IVa, RH growth
takes place for approximately 1 hour; this is followed by
Stage IVb in which LH growth is observed that can lasts
up to 48 hour. A further rotational inversion (Stage IVc)
has also been reported by some authors [13]. In a series
of experimental and theoretical papers, Ortega, Gamow
and co-workers have presented a geometric explanation
for the rotation in Stage IVb based on the reorientation
of the microfibrils during growth [14, 15]. They also sug-
gested that the inversion of rotation may be due to a
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so-called “microfibril slippage” effect but they did not
further elaborate on the mechanics of this process.

Here we present a mechanical model for the rotational
reversals observed in Stages IVa, IVb, and IVc. We view
the sporangiophore as a growing, fiber-reinforced, elastic
structure and include a dynamical remodeling and depo-
sition of the fibers. Our basic assumption is that new
fibers are deposited in a stress-free state along the di-
rection of existing fibers. The fiber angle starts close to
the horizontal direction in a right-handed orientation and
the growth zone increases to its asymptotic size. The
rotation of the tube is then simply obtained from the
mechanical balance that results from the extension of an
anisotropic elastic tube under pressure in the absence of
an end moment. Strikingly, the model predicts that un-
der extension a fiber will always tend to align in the axial
direction but that the tube can either rotate clockwise or
counter-clockwise depending on the angle of the fibers
and their state of stress. Within this model, the initial
RH growth is shown to be a transient phenomenon that
disappears when the growth zone is sufficiently extended.
Once the growth zone is fully established, a regular LH
growth persists with constant rotation up to a point when
the growth zone starts retracting and a further inversion
is possible, again as a short transient phenomenon.

The length and time scales in Stages IVa and IVb are
as follows. A typical radius of the sporangiophore is l =
50µm and we will use this radius (assumed to be constant
throughout these phases) as the length scale. The wall
thickness is l/83. The growth zone, which is the zone
immediately below the sporangium where new cell wall
material is added, extends to to a size h ∼ 60 l. A typical
sporangiophore length is 3− 4× 103 l. In Stage IVb, the
typical axial velocity is a constant vz = 60 l/hr, that is
a doubling time of about one hour for the size of the
growth zone.This is accompanied by an angular rotation
in Stage IVb of approximately 4π/hr for a duration of
24-48 hours. In contrast, Stage IVa last about 1hour.

We model the sporangiophore as an anisotropic, elas-
tic, incompressible tube with two families of embedded
fibres. The first family of fibres is in the hoop direc-
tion and provides the cylinder with sufficiently strong
radial reinforcement such that under pressure the radius
is constant and expansion is confined to a pure extension
along the axis. The second family of fibres winds heli-
cally (right-handed [16]) around the axis and induces a
rotation of the cylinder under extension. The presence
of the hoop fibers together with the relative thinness of
the wall compared to the radius are used to justify the
modeling assumption that there is no variation (strain or
stress) in the radial direction and that the tube radius
is constant. Also, since the growth zone is much larger
than the radius, we neglect gradient effects in the axial
direction.

We consider finite deformations in which the cylin-
der is allowed to grow, rotate around its axis, and elon-

gate axially while remaining cylindrical. Thus, in cylin-
drical coordinates with the z-axis corresponding to the
vertical axis of growth, the rotation is θ = Θ + τζZ,
where τ is the torsion, and the axial stretch is ζ = z/Z
(here upper case symbols correspond to the reference
configuration before pressure is applied). The mate-
rial response is specified by the standard reinforcing
model [17] with the simplest possible dependence for its
isotropic and anisotropic parts W (I1, I4) = µ1/2(I1 −
3) + µ4/4(I4 − ν2)2 where the Cauchy-Green deforma-
tion tensor invariants are I1 = ζ2τ2 + ζ2 + 1/ζ2 + 1, I4 =
ζ sin Φ

(
ζ
(
τ2 + 1

)
sin Φ + 2τ cos Φ

)
+ cos2 Φ. The angle

Φ denotes the orientation of the fibers with respect to
the horizontal plane in the reference configuration and ν
is the pre-compression of the fibers in the initial config-
uration. The anisotropic contribution to the hoop stress
is proportional to (I4ν2). Since I4 = 1 in an unstressed
configuration , the case ν > 1 results in a negative, i.e.
compressive stress. It is straightforward to show that the
fiber orientation, φ, in the current configuration is

φ = arctan
(

ζ sin Φ
cos Φ + ζτ sin Φ

)
(1)

where we have assumed a thin-walled cylinder of constant
(unit) radius.
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FIG. 2: Effect of fiber pre-compression on torsion τ as a func-
tion of the fiber angle Φ (the behaviors illustrated in Figures
2,3,4, are all for µ = 5, ζ = 1.4 but are robust to changes in
the parameter values).

We first consider a static model and assume that our
tube is uniform with height H and a fixed fiber angle with
a right-handed helical configuration 0 < Φ < π/2. We
then subject it to an internal pressure leading to a given
extension ζ that we use to parameterize the internal load.
From the strain-energy function, we compute the Cauchy
stress tensor T and verify that it satisfies identically the
equilibrium equations (without body force). Since no
axial moment is applied on the surface of the tube, the
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boundary condition is simply Tθz = 0 where

Tθz = µ1ζ
2τ + ζµ4 sin Φ(ζτ sin Φ + cos Φ)×(

ζ sin Φ
(
ζ
(
τ2 + 1

)
sin Φ + 2τ cos Φ

)
+ cos2 Φ− ν2

)
,

which leads to a cubic equation for τ for given values of
Φ, ν, ζ and ratio µ = µ4/µ1. This is the torsion needed
to relax the torsional stress in the tube induced by the
anisotropy. Some of these solutions are shown in Fig 2.

In the absence of pre-compressed fibers (ν = 1) we see
that the twist τ is always negative, i.e. the top of tube
will rotate clockwise by an angle Θ = τh = τζH lead-
ing to the appearance of left-handed growth. The effect
of pre-compression in the fibers is quite remarkable and
non-intuitive. Even for small levels of pre-compression
(e.g. ν = 1.05), at small fiber angles, the cylinder will
rotate counter-clockwise as shown in Fig. 2. The critical
fiber angle Φc at which there is no rotation is given by
Φc = arccos

(√
(ζ2 − ν2)/(ζ2 − 1)

)
and clearly requires

ζ > ν. The inversion occurs when fibers go from com-
pression to tension, since the critical angle corresponds
to the point I4 = ν2. In the absence of pre-compression,
the cylinder rotates clockwise. Despite the torsional in-
version, the fiber orientation in the current configuration
is always greater than the orientation in the reference
configuration (see Fig 3).
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FIG. 3: Fiber orientation, φ, in the current configuration as
a function of Φ, and the corresponding plot of τ(Φ)). The
dashed diagonal line corresponds to φ = Φ.

From the expression for Tθz it is possible to obtain a
lower bound, τmin, and a lower upper bound, τmax, for
the torsion in the limit of stiff fibers µ� 1, namely

τmin = −
√

(ζ2 − ν2)/νζ, τmax =
√
µ(ν − 1)ν/ζ. (2)

We have shown that a fiber-reinforced elastic tube
with right-handed helical fibers can rotate clockwise or
counter-clockwise depending on the initial angle, axial
extension, and initial stress in the fiber. We use this
key result to develop a model of growing phycomyces in
which new fibers are continuously laid down in an evolv-
ing growth zone at the top of the sporangiophore. Our

key assumptions are: (i) new fibers are laid down stress-
free along the direction of fibers in the current configu-
ration; (ii) the growth zone extends linearly in time to
a size h within the first two hours. A crucial concept is
that the current configuration at a given time step be-
comes the reference configuration for the next time step.
The overall growth process can now be explained as fol-
lows. Consider a material point in the cell wall. Initially
fibers are laid down at some small angle Φ0 with ν0 = 1
at the top of the growth zone. The extension (due to
the turgor pressure) and the rotation (due to the relax-
ation of the torsional stress) of the cylinder result in the
fibers re-orienting to an angle φ1. As growth proceeds,
the material point moves downward with respect to the
top of the growth zone and new fibers at the same ma-
terial point are laid down with angle Φ1 = φ1 and zero
stress. This material point now has a mixture of fibers
with angles Φ0 and Φ1. The effective stress in the fibers in
this new reference configuration (at this material point)
is thus a combination of fibers with pre-compressions ν0
and ν1. A continuous model of this process is given by

∂Φ
∂t

= κ1(φ− Φ),
∂ν

∂t
= κ2(ζ − ν) sin Φ. (3)

where Φ, φ, ν, ζ are all evaluated at Z, the distance from
the top of the sporangiophore of a material point in the
reference configuration. Following the property of the
angle φ = φ(Φ) given above, we have Φ(t) → π/2 and
ν(t) → ζ as t→∞. The time constant 1/κ1 is fitted so
that when a material point leaves the growth zone the as-
sociated fiber is oriented along the axis, i.e. Φ(1) ≈ π/2
and similarly 1/κ2 is fitted to match the time for rota-
tional inversion. As an example of the dynamics gener-
ated by this system (coupled to the equations for φ and
τ), we show in Fig. 4 the evolution of τ , Φ, and ν as a
function of time.

Each time the tube extends and twists as an elastic
response to the extensional and torsional stresses, there
is an evolution of the reference configuration due to the
deposition of new fibers and other wall building materi-
als. The net result is a continuous remodeling of the cell
wall leading to an irreversible growth of the tube. The
rotation of a small disk of height ∆Z at point Z mea-
sured from the top of the growth zone with fiber angle
Φ and pre-compression ν (in the reference configuration)
is ∆θ = τ(Φ(Z), ν(Z))∆z = τζ∆Z. Thus the total rota-
tional velocity, ω, can be estimated as

ω = t−1
r

∫ H

0

τ(Φ(Z), ν(Z))ζdZ, (4)

where tr is a characteristic timescale corresponding to
the remodeling time of the reference configuration.

We can now use our model for the evolution of the
fiber angle and the fiber pre-compression to compute the
rotational dynamics of our growing cylinder. We assume
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FIG. 4: Dynamic of τ, ν, and Φ for a given material point
as a function of time (κ1 = 16hr−1, κ2 = 4hr−1. While this
process takes place, the material point at t = 0 starts on top
of the growth zone and is convected downward (with respect
to a reference frame moving with the top of the growth zone).

that the growth zone extends linearly in time with a con-
stant velocity vz up to a length h = Hζ (corresponding
to the end of Stage IVa). Then the length of the growth
zone remains stationary (Stage IVb) and the tube ex-
tends, while rotating at a constant rate, until the growth
zone retracts resulting in another inversion (Stage IVc)
as shown in Fig 5.
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FIG. 5: Rotational velocity (in units of radians per unit time,
tr) of the sporangiophore as a function of time. The time -1
on the right-side of the time axis refers to one hour before the
end of growth, i.e. the time in this simulation at which the
growth zone starts to retract.

Initially before the growth zone is fully established,
only the fibers in the top part of the zone play a role
and the net rotation is counter-clockwise leading to right-
handed growth (Stage IVa). Once the growth zone is fully
established, the observed rotation of the sporiangium is
determined by the integral over the entire zone, hence
leading to a left-handed spiral (Stage IVb). Interestingly,
the model predicts that at any given time there are indi-
vidual material points in the growth zone turning both

counter-clockwise (top of the growth zone) and clockwise
(bottom). The integrated effect of these rotations de-
pends on the extent of the growth zone. This is entirely
consistent with the detailed observations of [18] on the
rotation of individual points in the growth zone. Esti-
mates of the rotational velocity depend on the choice of
the time scale tr. From Fig. 5 we see that in Stage IVb
|ω| ∼ 1.5, and for the range of tr, 1/κ1 ≤ tr ≤ 1/κ2, one
finds the corresponding range of 1 to 4 turns/hr. This is
qualitatively consistent with the observed 2 turns/hr.

The model proposed here relies on two simple funda-
mental assumptions: first, new fibers are laid down along
the direction of existing fibers; second, new fibers are
laid down in a stress-free state. The rotational inversion
is then a direct consequence of the response of a tubu-
lar, fiber-reinforced, morpho-elastic material, namely a
material that responds elastically on short time scales
(relieving torsional stress by rotation of the cylinder)
and whose reference configuration evolves on longer time
scales, leading to an irreversible (plastic-like) behavior.
The beauty of the inversion phenomenon is that it relies
on the nonlinear anisotropic response of the system and
leads to two apparent non-intuitive behaviors: first, the
fibers tend to align with the axis, independently of the
rotation; second, right-handed helical fibers can lead to
both clockwise and counter-clockwise rotation depending
on the angle and level of pre-compression.
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