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Abstract

We experimentally study the magnetization dynamics of pairs of micron-sized permalloy squares

coupled via their stray fields. The trajectories of the vortex cores in the Landau-domain patterns of

the squares are mapped in real space using time-resolved scanning transmission X-ray microscopy.

After excitation of one of the vortex cores with a short magnetic-field pulse, the system behaves

like coupled harmonic oscillators. The coupling strength depends on the separation between the

squares and the configuration of the vortex-core polarizations. Considering the excitation via a

rotating in-plane magnetic field, it can be understood that only a weak response of the second

vortex core is observed for equal core polarizations.

PACS numbers: 75.70.Kw, 03.65.Ge, 68.37.Yz
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Sub-nanosecond dynamics and potential technological applications, e.g., in ultra-fast and

high-density digital storage devices or microwave emission sources give rise to a broad sci-

entific interest in the dynamic properties of ferromagnetic microstructures with vortex mag-

netization configuration [1–7]. Vortices appear in ferromagnetic thin-film squares where a

magnetization configuration with magnetic moments pointing in-plane and parallel to the

edges is energetically favorable. In the center, the short-range exchange coupling which fa-

vors a parallel orientation of the magnetic moments forces the magnetization out-of-plane.

Vortex configurations are characterized by their polarization p = ±1 and their chirality

C = ±1 describing the magnetization orientation of the core and the in-plane counterclock-

wise or clockwise curling of the magnetization around the core, respectively. Once deflected

and released, vortices exhibit a spiral motion around their equilibrium position where the

sense of gyration depends on the polarization p. For small deflections, the trajectory can be

described analytically as a two-dimensional harmonic oscillator [8].

The magnetostatic interaction between spatially separated structures has to be taken into

account when the inter-element distance is smaller than the lateral size of the elements [9].

Previous studies focus on the dynamics of interacting vortices that are excited simultane-

ously [10–12]. In arrays of ferromagnetic disks, the resonance frequency of the vortex-core

motion is strongly affected [13, 14]. However, dynamic interaction with individual elements

has to be further investigated [15, 16]. For many applications, a high packing density is

desired and the stray-field mediated interaction is important, e.g., with respect to cross talk

in potential memory devices. Only recently, it has been shown experimentally that vortex

gyrations can be induced by dipolar interaction between physically disconnected ferromag-

netic disks [17].

We experimentally demonstrate coupled vortex gyrations in pairs of spatially separated

permalloy squares. The core trajectories are determined by time-resolved X-ray microscopy.

After exciting one element via a short magnetic-field pulse in the plane of the square, the

stray field of the excited structure induces a gyration of the vortex in the adjacent square. An

oscillatory change of the gyration amplitudes in the two squares is observed. The interact-

ing vortices reveal a fundamental behavior known from other coupled harmonic oscillators.

Distinct normal modes for in-phase and antiphase motion of the vortex cores can be iden-

tified. The coupling strength depends on the separation distance between the squares and

the configuration of the core polarizations.
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FIG. 1: (Color online) Magnetic force micrographs of two pairs of permalloy squares with a center-

to-center distance of (a) d = 2.25 µm and (b) d = 2.5 µm. A stripline (illustrated in yellow) is

deposited on top of the left square (I). (c) X-ray images showing the time-dependent in-plane

magnetic contrast in the center part of square I after excitation at zero-time. Here, the time step

between two successive images is 1.0 ns. White dots designate the position of the vortex core.

Black and gray lines in the graph mark the evaluated deflection in x- and y-direction, respectively.

The x-axis is corrected according to the tilt of the sample.

Pairs of ferromagnetic squares as shown in Fig. 1(a) and 1(b) are fabricated using electron-

beam lithography and lift-off processing. Polycrystalline permalloy (Ni80Fe20) with a thick-

ness of 60 nm is thermally evaporated onto a 100 nm thin silicon-nitride membrane. The

edge length of the squares is l = 2.0 µm and the center-to-center distance d is varied from

2.25 µm to 3.5 µm. Magnetic force micrographs confirm the presence of Landau-domain

patterns with a single vortex core. A 800 nm wide stripline of 150 nm copper and a gold

cap of a few nanometers is deposited on top of the left squares (I) via thermal evaporation,

illustrated in Fig.1.

The measurements have been performed using time-resolved scanning transmission X-ray

microscopy (STXM) [18] at beamline 11.0.2 of the Advanced Light Source (ALS) in Berkeley,

CA, USA. Magnetic contrast is provided via the X-ray magnetic circular dichroism (XMCD)

at the Ni L3-absorption edge (852.7 eV) [19]. Images are taken in a configuration sensitive to

the in-plane magnetization with the sample mounted under an angle of 60◦ and in a config-

uration sensitive to the out-of-plane magnetization with the sample mounted perpendicular

to the beam axis. The latter configuration enables to directly image the magnetization of the

3



vortex core and the core trajectory is mapped with significantly higher precision. A current

pulse of 1.8 ns duration through the stripline initially deflects the vortex core in element I

via the resulting magnetic-field pulse of ≈ 3 mT in the plane of the square. The magnetic

response is detected in time steps of 500 ps. Figure 1(c) shows the time-dependent in-plane

magnetic contrast of a square located under the stripline. The deflection XI = (XI, YI) in x-

and y-direction is determined from the X-ray images. The period of 5.5 ns corresponds to a

frequency of 182 MHz which is in accordance with the eigenfrequency of vortex gyration in

single elements [20].

Figures 2(a) and 2(b) show the time-dependent trajectories of two different pairs de-

termined from X-ray images after excitation of element I. The two elements I under the

stripline [solid and dashed lines in Fig. 2(a)] have opposite core polarizations p and opposite

chiralities C which leads to an in-phase motion in x- and an antiphase motion in y-direction.

Note that opposite chiralities lead to an initial deflection in the opposite direction of the

y-axis. Figure 2(b) unambiguously reveals magnetization dynamics in the elements II next

to the stripline which proves the coupling via the stray fields. For these elements, the Oer-

sted field of the stripline is not the main source of excitation since there is a considerable

time-delay of more than 10 ns in the maximum amplitude between the two elements I and

II. The elements represented by the solid lines in Figs. 2(a) and 2(b) have opposite po-

larizations and same chiralities which leads to an in-phase motion in x- and an antiphase

motion in y-direction. Since the elements represented by the dashed lines have opposite

polarizations and opposite chiralities, an antiphase motion in x- and an in-phase motion in

y-direction is observed. There is no significant difference in the maximum displacements

|XIImax| between the two cases which indicates that the chirality does not play an important

role for the coupling strength. It just leads to a phase shift.

Figure 2(c) reveals only weak motion of the vortex core in element II in the case of

same core polarizations (pI = pII). The gyration amplitude in element I decreases ex-

ponentially which corresponds to the behavior of a single element. Fitting the time-

dependent displacement |XI| with an exponential function yields a damping parameter

Γ = (2.98 ± 0.10) × 107 s−1. The parameter Γ depends on the gyration frequency, the

sample geometry and the Gilbert damping parameter α [8]. A gyration of the vortex core

in element I leads to a time-dependent change of the local stray field. To get an idea of

this stray field, micromagnetic simulations of a square with a thickness of 20 nm and an
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FIG. 2: (Color online) Trajectories of vortex cores after pulse excitation in three pairs of ferromag-

netic squares (d = 2.5 µm) with different chirality and polarization configurations determined with

(a), (b) in-plane and (c) out-of-plane magnetic contrast. Black and gray lines mark the deflection

in x- and y-direction, respectively. For opposite core polarizations (pI = −pII), the deflections XI,

YI of the vortex in the elements I are shown in (a) and the deflections XII, YII in the elements

II are shown in (b). Pairs with different chirality configuration are marked as solid (CI = CII)

and dashed (CI = −CII) lines. For same core polarizations (pI = pII), the deflections XI, YI, XII

and YII for one pair are shown in (c). The dashed red lines illustrate the exponential decrease of

|XI|. Core positions can be determined with an accuracy of ±10 nm for the in-plane and ±5 nm

for the out-of-plane configuration. STXM measurements are available as movies S1 and S2 in the

supplementary material [21].

edge length of l = 200 nm [22] are performed using the Object Oriented MicroMagnetic

Framework (OOMMF) [23] with a cell size of 2 × 2 × 20 nm3. A saturation magnetization

Ms = 8×105 A/m, an exchange constant A = 13×10−12 J/m, and α = 0.01 are assumed. In

the vortex ground state, a fourfold symmetry is observed, see Fig. 3(a). Figure 3(b) reveals

that the symmetry of the stray field is broken for an off-centered vortex core. However, at

a sufficiently large distance from the square, the shape of the stray field reminds of the field
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FIG. 3: (Color online) Micromagnetic simulations of the stray field Hint of a square (a) in the

vortex ground state and (b) with an off-centered vortex core (black circle). Arrows outside the

squares represent streamlines of the stray field. Arrows inside the squares indicate the direction of

the magnetization in the domains (C = 1).

of a dipole located in the center of the square. In the case of pI = pII, the sense of rotation

of the stray field opposes the intrinsic sense of gyration of the vortex core in element II. It

has been shown that an in-plane rotating field only efficiently excites the gyrotropic mode

when the sense of rotation of the field coincides with the sense of gyration given by the core

polarization [24, 25]. The stray field of a square is not rotationally symmetric, compare

Fig. 3(b). However, this analogy helps to understand the significant difference between the

two polarization configurations.

For small deflections, the sum of the exchange energy and the self-magnetostatic energy of

a single off-centered vortex core can be expanded in a series on the displacement |Xi|. This

energy contribution can be written as (κ/2) (X2
i

+ Y 2
i
), where the stiffness constant κ is a

function of the geometry and the material parameters of the ferromagnetic square [8, 10, 13].

Assuming a rigid vortex core, the equation of motion [26] describes two-dimensional weakly

damped harmonic oscillations in a parabolic potential. Neighboring squares couple via their

stray fields when the inter-element distance is below their lateral size [9–17]. The inter-

action gives rise to an additional energy term. Then the equation of motion describes

two-dimensional weakly damped coupled oscillations of the pair (I, II). Two normal modes

arise in a pair of two weakly interacting oscillators - a low-frequency mode (ω1) with an

in-phase and a high-frequency mode (ω2) with an antiphase movement of the oscillators.

Any other motion of the coupled system can be described as a superposition of these two

normal modes. For each of the two polarization configurations (pI = pII or pI = −pII), two
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FIG. 4: (Color online) (a) Time-dependent deflections of the vortex cores in a pair with pI = −pII

and d = 2.25 µm determined via STXM in out-of-plane configuration. Black and gray lines mark

the deflection in x- and y-direction, respectively. The dashed red lines illustrate the beating. (b)

Deflection XI (black line) and displacements (c) |XI| and (d) |XII| (black dots) of the cores. Fits

in (b)-(d) are shown as dashed blue lines.

different normal modes are expected to occur [10]. In the following, we concentrate on the

experiments with opposite core polarizations.

Only one core is initially deflected and thus a superposition of the two normal modes

- for in-phase (ω1) and antiphase (ω2) motion - is excited. The vortex cores gyrate with

the angular frequency ω+ = (ω1 + ω2)/2. The amplitude of these gyrations is modu-

lated with the beating frequency ω− = (ω2 − ω1)/2. This can be interpreted in terms

of energy exchange between the two vortex cores [17]. Energy dissipation causes a time-

dependent decrease of the displacements |XI| and |XII|. Figure 4(a) exhibits a full beating

period T = 4π/(ω2 − ω1). A gyration frequency of ω+/(2π) = (179 ± 3) MHz is ob-

tained by fitting the time-dependent deflections in x- and y-direction with a sinusoidal

function, e.g., XI = K sin (ω+t + φ), see Fig. 4(b). In addition, the displacements of both

vortex cores can be fitted with the two orthogonal exponentially damped sinusoidal func-

tions |XI| = |D cos (ω−t)| exp (−βt) and |XII| = |E sin (ω−t)| exp (−βt). The fits shown

in Figs. 4(c) and 4(d) yield a beating frequency ω−/(2π) = (18 ± 1) MHz and an energy
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FIG. 5: (a) Normal mode frequencies ω1 (gray) and ω2 (black) in dependence on the normalized

center-to-center distances 2d/l. The inset shows the frequency splitting ω2 − ω1. (b) Maximum

displacements |XImax| (black) and |XIImax| (gray) of the vortex cores.

dissipation parameter β = (2.39 ± 0.06) × 107 s−1. Taking into account the result for ω+,

the frequencies of the two normal modes are identified to be ω1/(2π) = (161 ± 3) MHz for

in-phase and ω2/(2π) = (197 ± 3) MHz for antiphase motion. Note that β ≈ Γ, compare

Fig. 2(c), which indicates that the energy dissipation is mainly given by the material and

the geometry of the single elements.

Figure 5(a) shows the two normal mode frequencies ω1 and ω2 in different pairs (I, II) as

a function of the normalized center-to-center distance 2d/l. The coupling strength decreases

with increasing separation and thus the two normal modes approach each other. A decreas-

ing frequency splitting ω2 −ω1 corresponds to an increase of the beating period. Due to the

damping of the system, the average values of the maximum gyration amplitude |XIImax| in

element II decrease with increasing separation, whereas the maximum amplitude in element

I remains approximately the same. STXM measurements are available as movie S3 in the

supplementary material [21]. No significant movement of the vortex core in element II could

be observed for a normalized center-to-center distance of 2d/l = 3.5 and thus the coupling

can be neglected.

In summary, we have directly observed the stray-field coupled harmonic oscillations of

vortices with opposite core polarizations in pairs of spatially separated permalloy squares.

A superposition of the two normal modes for in-phase and antiphase motion has been ex-
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cited via a short magnetic field pulse applied to one of the two elements. With increasing

separation, the coupling within the pair is notably decreased. A dependence on the core

polarization configuration can be understood by considering the excitation via a rotating

in-plane magnetic field.
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