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Sr2IrO4 has been suggested as a Mott insulator from a single Jeff = 1/2 band, similar to the
cuprates. However this picture is complicated by the measured large magnetic anisotropy and
ferromagnetism. Based on a careful mapping to the Jeff = 1/2(pseudospin-1/2) space, we propose
that the low energy electronic structure of Sr2IrO4 can indeed be described by a SU(2) invariant
pseudospin-1/2 Hubbard model very similar to that of the cuprates, but with a “twisted” coupling
to external magnetic field (a g-tensor with a staggered antisymmetric component). This perspective
naturally explains the magnetic properties of Sr2IrO4. We also derive several simple facts based
on this mapping and the known results about the Hubbard model and the cuprates, which may be
tested in future experiments on Sr2IrO4. In particular we propose that (electron-)doping Sr2IrO4

can potentially realize high-temperature superconductivity.

PACS numbers: 71.10.Fd,74.10.+v,75.30.Gw

Various Ir oxides have recently become the platform
to study the interplay between strong spin-orbit(SO) in-
teraction and strong correlation effects. There has been
an experimental observation of a three-dimensional spin
liquid in a hyper-kagome structure of Na4Ir3O8 [1]. The-
oretical proposals such as the realization of correlated
topological insulators [2], the Kitaev model [3], and a
Dirac semimetal with surface “Fermi arcs” [4] in iridates
have been made as well. Here we propose that doped
Sr2IrO4 may realize high-temperature superconductivity
similar to the cuprates.

The crystal structure of Sr2IrO4 consists of two-
dimensional(2D) IrO2 layers, similar to the parent com-
pound La2CuO4 of the cuprates. The main difference is
that the oxygen octahedra surrounding Ir rotate along
c-axis by about 11◦ in a staggered pattern, enlarging the
unit cell by

√
2 ×

√
2 × 2 [5]. The electronic structure

of Sr2IrO4 is quasi-2D, but is expected to have several
differences from the cuprates. Ir4+ has the electronic
structure 5d5, so the t2g levels should to be active, while
Cu2+ with 3d9 configuration has only the top eg level
active. Ir as a 5d transition metal is expected to have
weaker correlation effects than 3d elements(e.g. Cu). At
this point one may expect that Sr2IrO4 is a (multi-band)
weakly correlated metal. But strong spin-orbit coupling
of Ir dramatically changes the story. The t2g levels are
split by SO interactions into a higher energy Kramers
doublet (the pseudospin-1/2 or Jeff = 1/2 states) and
two pairs of lower energy ones (Jeff = 3/2 states) [6].
These Jeff = 1/2 states are equal weight superpositions
of all three t2g orbitals, and this has been confirmed ex-
perimentally by resonant x-ray scattering [7] and theo-
retically by LDA+SO+U calculation [8]. With d5 con-
figuration of Ir the Jeff = 1/2 states are half-filled. They
have much smaller band width than expected for the t2g

levels without SO interaction and therefore effectively en-
hanced correlation effect. In the end Sr2IrO4 is a Mott

insulator and exhibits magnetic order below 240K [9–11].

It is tempting to make the analogy between Sr2IrO4

and the cuprates and speculate that doped Sr2IrO4 can
also realize the interesting physics in doped cuprates,
e.g. superconductivity, pseudogap, stripe formation,
etc.. But strong SO interaction, different active orbitals
and the rotation of oxygen octahedra seem to signifi-
cantly complicate the problem. For example, Sr2IrO4

has very anisotropic susceptibility and shows ferromag-
netism(FM) with large ferromagnetic moment ∼ 0.14µB

per Ir [12], which was attributed to Dzyaloshinskii-
Moriya(DM) interaction generated by the rotation of
oxygen octahedra. However it has been pointed out by
Jackeli and Khaliullin [3] that the DM interaction can be
removed by staggered rotation of pseudospin spaces on Ir
sites. We will extend this consideration to the electronic
model and show that Sr2IrO4 can be approximately de-
scribed by a SU(2) invariant one band Hubbard model
under careful interpretation. The Hubbard model has a
“twisted” coupling to external magnetic field, namely a
g-tensor with staggered antisymmetric component. Ex-
cept this fact the model of Sr2IrO4 remarkably resem-
bles that of the cuprate. By making analogies to the
cuprates we will propose that various interesting physics
including high-Tc superconductivity may be realized in
Sr2IrO4. Our formulation provides a simplified picture
(despite the complicated structure, strong SO coupling
and nontrivial magnetism) for the electronic structure of
Sr2IrO4, and hopefully some guide for future experimen-
tal researches.

The mapping to one band Hubbard model. To
begin with we will treat Sr2IrO4 as quasi-2D and consider
only one IrO2 layer, which is schematically illustrated
in Fig. 1. Label the rotation angle of oxygen octahe-
dron around Ir site j by θj = ǫjθ, with ǫj = ±1 for the
two sublattices and θ ≈ 11◦ from experiments [5]. The
crystal-field splitting of t2g and eg levels and projection
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FIG. 1: Schematic picture of one IrO2 layer. Large filled/open
circles indicate the Ir atoms on two sublattices. Small open
circles are oxygens. Small x, y are the global axis, while cap-
tial X, Y indicate local cubic axis(sublattices dependent).

to Jeff = 1/2 states should be implemented in the rotated
local cubic axis. Label the global axis by x, y, z and local
cubic axis (on site j) by X, Y, Z (see Fig. 1). The unit
vectors of these two coordinates systems are related by

X̂ = x̂ cos θj +ŷ sin θj , Ŷ = −x̂ sin θj+ŷ cos θj , Ẑ = ẑ.
(1)

The Jeff = 1/2 states are (see e.g. Ref. [6], the phase
convention here is slightly different, i =

√
−1)

|Jz
eff = +1/2〉 =

1√
3

(+i|XY, ↑〉 − |XZ, ↓〉 + i|Y Z, ↓〉) ,

|Jz
eff = −1/2〉 =

1√
3

(−i|XY, ↓〉+ |XZ, ↑〉 + i|Y Z, ↑〉) .

(2)

XZ, Y Z, XY are the t2g orbitals defined in the local cubic
axis. ↑, ↓ indicate spin states (defined also in the local

cubic axis). Note that although the elongation of oxygen
octahedra along c-axis is expected to change the relative
weights of the three orbitals [3, 6], this has not been
observed in resonant x-ray scattering experiment [7] or
LDA+SO+U calculation [8].

As the first approximation, the effective electronic
Hamiltonian should be the projection of full Hamilto-
nian on the subspace of Jeff = 1/2 states. Considering
first the Hamiltonian on the t2g subspace, we expect the
following, 1) the t2g orbitals should be defined in the local

cubic axis basis, because the crystal-field on Ir 5d orbitals
from neighboring oxygens is diagonal only in the local

cubic axis; 2) assuming that hoppings between Ir sites
are mediated by the oxygen 2p orbitals, simple symme-
try consideration shows that effective hoppings between
nearest-neighbor Ir are orbital diagonal(one t2g orbital
does not hop to another orbital) only in the local cubic
axis basis; 3) if the spin spaces are defined in the global

axis basis, the effective hoppings of Ir t2g orbitals will
be real. Two tight-binding models on the t2g subspace
have been obtained by fitting LDA+SO+U dispersions
in Ref. [8] and Ref. [13], and both have this property
of real orbital diagonal hoppings, but no clear interpre-
tation was given. The discussion above shows that the
orbitals in these models should be interpreted as the t2g

orbitals in the local cubic axis, while the spins in these
models are defined in the global axis.

The spin space on every site should be first rotated
to local axis before the projection to the Jeff = 1/2
states, because the spins used in (2) are defined in lo-
cal axis. Namely we need to interpret the electron op-
erators c†j,a,ν used in these models, on site j for orbital
a = XZ, Y Z, XY with spin ν, as creation operators for
the states eiǫνθj/2|j, a, ν〉, where ǫν = ±1 for spin index
ν =↑, ↓ respectively.

Define d↑ and d↓ as the annihilation operators for
the |Jz

eff = ±1/2〉 states (2) respectively. The
projection on the Jeff = 1/2 subspace is imple-

mented by the following substitution, c†j,XY,ν →
−ǫνi√1/3 eiǫνθj/2d†j,ν , c†j,XZ,ν → ǫν

√

1/3 eiǫνθj/2d†j,−ν ,

and c†j,Y Z,ν → −i√1/3 eiǫνθj/2d†j,−ν . The onsite interac-
tions between t2g orbitals will be projected into an onsite
U term of the Hubbard model for the Jeff = 1/2 states
due to time-reversal symmetry and charge conservation.

We take as a concrete example the tight-binding model
of Ref. [13]. It involves nearest-neighbor(NN) XY hop-
ping t1 = 0.36eV, NN XZ(Y Z) hopping along x(y) di-
rection t4 = 0.37eV, NN XZ(Y Z) hopping along y(x)
direction t5 = 0.06eV, next-nearest-neighbor XY hop-
ping t2 = 0.18eV, and third-neighbor XY hopping t3 =
0.09eV. The resulting one band Hubbard model after pro-
jection is

H = −
∑

<jk>,α

(t + iǫαǫj t̄) d†j,αdk,α −
∑

<<jk>>,α

t′ d†j,αdk,α

−
∑

<<<jk>>>,α

t′′ d†j,αdk,α + U
∑

j

d†j,↑dj,↑d
†
j,↓dj,↓

(3)

with α =↑, ↓, and the effective hoppings are t =
(1/3)(t1 + t4 + t5) cos θ ≈ 0.258eV, t̄ = (1/3)(t1 −
t4 − t5) sin θ ≈ −0.0045eV, t′ = (1/3)t2 ≈ 0.06eV,
t′′ = (1/3)t3 ≈ 0.03eV. t̄ is very small and will be ig-
nored hereafter. In general t̄ can be absorbed into t
by a unitary transformation dj,α → eiǫαǫjφ/2d̃j,α with
φ = arc tan(t̄/t), but we will not elaborate on this. The
value of U has been estimated as ∼ 2eV [8, 11]. This
t − t′ − t′′ − U model has been widely used as an ef-
fective model for the cuprates, although the parameters
here have different values.

With large U and at half-filling the model (3) is an
Mott insulator described by a pseudospin-1/2 model with
SU(2) symmetry. If second- and third-neighbor t′, t′′

are ignored the half-filling pseudospin model to the low-
est order of t/U is just the Heisenberg AFM model of
pseudospins J, HAFM =

∑

<jk>(4t2/U)Jj · Jk. Each
pseudospin has three components (a = 1, 2, 3) Jj,a =

(1/2)
∑

α,β d†j,α(σa)αβdj,β , where σ are Pauli matrices
and α, β =↑, ↓ label the Jz

eff = ±1/2 states.
Coupling to external magnetic field. Although

the effective model (3) looks exactly like the model of
the cuprates, the coupling to external magnetic field in
Sr2IrO4 is quite different.
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Assume the coupling of magnetic field B on Ir 5d
orbitals is described by the atomic form (more care-
ful treatment can be found in, e.g., Ref. [6]), HB =
−µBB · (L + 2S), where µB is the Bohr magneton.
After projection to the Jeff = 1/2 states it becomes
HB = 2µBB · J = 2µB(BXJ1 + BY J2 + BZJ3). Note
that BX,Y,Z are components of field on the local cubic

axis, BX = B · X̂ etc.. Use the relation (1), the coupling
on site j in terms of the field components on the global
axis, Bx, By, Bz , is

HB,j = 2µB[Bj,x(Jj,1 cos θj − Jj,2 sin θj)

+ Bj,y(Jj,2 cos θj + Jj,1 sin θj) + Bj,z Jj,3.]

(4)

Therefore the observable magnetic moment Mj on site
j has the following components on the global axis,





Mj,x

Mj,y

Mj,z



 = −2µB





cos θ −ǫj sin θ 0
ǫj sin θ cos θ 0

0 0 1









Jj,1

Jj,2

Jj,3



 . (5)

If t̄ in (3) is not ignored θ ≈ 11◦ in (5) should be re-
placed by θ− arc tan(t̄/t) ≈ 12◦. This nontrivial relation
between moments M and pseudospins J, namely a g-
tensor with a staggered antisymmetric component, has
several interesting consequences which we list below.

i). By quantum Monte Carlo studies [14] the square
lattice Heisenberg model has a Néel ground state with
staggered “magnetization” |〈ǫjJj〉| ≈ 0.307. However be-
cause of the relation (5), the ordered moments do not
form a simple collinear Néel pattern. If the ordered
moments lie in the xy plane, they will be rotated to-
gether with the oxygen octahedra in a staggered pattern
therefore create a net ferromagnetic moment per site,
2µB · |〈ǫjJj〉| · sin θ ≈ 0.12µB. This is very close to the
experimentally observed value 0.14µB [12].

ii). By the relation (5) we can relate pseudospin cor-
relation functions of model (3) to moment correlation
functions which is actually measured by susceptibility
or magnetic neutron/x-ray scattering experiments. The
Fourier components of moments with wavevector q and
frequency ω is related to pseudospins by,

Mq,ω,x = −2µB[cos θ Jq,ω,1 − sin θ Jq+Q,ω,2],

Mq,ω,y = −2µB[cos θ Jq,ω,2 + sin θ Jq+Q,ω,1],

Mq,ω,z = −2µB Jq,ω,3.

where Q = (π, π) is the wavevector of Néel order.
In the paramagnetic phase the dynamical susceptibility
χab(q, ω), which is proportional to the “moment struc-
ture factor” 〈Mq,ω,aM−q,−ω,b〉, is related to the dynam-
ical pseudospin susceptibility χab

J (q, ω) = δabχJ(q, ω) ∝
〈Jq,ω · J−q,−ω〉 by

χxx(q, ω) = χyy(q, ω)

= cos2 θ χJ(q, ω) + sin2 θ χJ(q + Q, ω),

χzz(q, ω) = χJ(q, ω), and other components of χab are
zero. In particular the measured static uniform (ω =
0,q = 0) susceptibility in xy plane is actually a mixture
of the uniform and staggered susceptibility of the SU(2)
invariant Hubbard/Heisenberg model. This explains in
a different perspective the measured large anisotropy of
uniform susceptibility and the ferromagnetic Curie-Weiss
law [12]. In our picture the anisotropy is not mainly
from easy axis interaction suggested by Ref. [12] but from
the mixing of large staggered susceptibility, and the FM
Curie-Weiss law comes from the contribution of staggered
susceptibility close to AFM Néel order of pseudospins.

iii). In the high temperature paramagnetic phase
above the Néel ordering temperature, the measured
moment-moment correlation will be dominated by the
staggered pseudospin correlation of a SU(2) invariant
model, although the measured susceptibility shows sig-
nificant anisotropy. The moment-moment correlation
length will behave like the 2D Heisenberg model [15],
which has recently been observed by magnetic x-ray scat-
tering [16].

Possible high-temperature superconductivity.

If the one band Hubbard model (3) is indeed a good
approximation of the electronic struture of Sr2IrO4,
and if the high-temperature superconductivity in doped
cuprates is indeed described by the one band Hubbard
model, a natural consequence is that doped Sr2IrO4 will
realize high-temperature superconductivity. In the fol-
lowing we list several direct consequences from this anal-
ogy.

i). It is believed that the sign and magnitude of t′

is important for high-Tc in the cuprates and likely re-
sponsible for the particle-hole asymmetry of the phase
diagram. (see e.g., Ref. [17]). The relative magnitude
|t′/t| ≈ 0.23 for Sr2IrO4 is similar to the cuprates. How-
ever the sign of t′ for Sr2IrO4 is opposite to that of the
cuprates. This can be remedied by a particle-hole trans-
formation dj,α → ǫjd

†
j,α. Therefore we expect that the

doping phase diagram of Sr2IrO4 will be the particle-
hole conjugate of the cuprates, in particular high-Tc
will be easier to achieve on the electron-doped side of
Sr2IrO4, e.g. with La substitution of Sr. Interestingly
electron-doped Sr2IrO4−δ has recently been synthesized
and metallic behavior was reported for δ = 0.04 [18].

ii). The interlayer hopping of the cuprates is of the
form t⊥(k‖) = t⊥0 v2 with v = (cos kx − cos ky)/2, due
to the dx2−y2 orbital content [19]. This together with
the dx2−y2 nodal pairing symmetry significantly suppress
transport along c-axis, making the superconducting prop-
erties of the cuprates very anisotropic. However the resis-
tivity anisotropy ρc/ρab of Sr2IrO4 is only 102−103 [20],
very small compared to 104 − 105 of the cuprates [21],
which implies a larger t⊥0 for Sr2IrO4. The active or-
bitals for Sr2IrO4 is very different from the cuprates and
the factor v2 should be different and not vanish on the
nodal direction. Both facts suggest that Sr2IrO4 should
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have more isotropic superconducting properties which is
beneficial for practical applications.

iii). The pairing will be a pseudospin singlet dx2−y2

pairing and in many ways behave like the d-wave pairing
of the cuprates. Phase sensitive and other indirect mea-
surements used to determine the d-wave symmetry in the
cuprates can be applied to doped Sr2IrO4 as well.

iv). The energy scale of the one band Hubbard model
for Sr2IrO4 is lower than that of the cuprates by about
50%. Therefore the Tc of doped Sr2IrO4 will likely be
lower than the cuprates.

Discussion and Conclusion. The one band Hub-
bard model (3) is of course the zeroth order approxima-
tion of the low energy electronic structure of Sr2IrO4.
Indeed there are experimental and theorectical evidences
[8, 11, 13] that the Jeff = 3/2 bands overlap with the
Jeff = 1/2 band and therefore strong exchange anisotropy
might be present. However the observed scaling of corre-
lation length follows that of isotropic Heisenberg model
above Néel temperature [16], and the Jeff = 3/2 bands
are completely below Fermi level for about 0.3eV from
ARPES results [11]. We thus believe that for magnetic
properties above the Néel temperature and for electron-

doped Sr2IrO4 this SU(2) invariant one band Hubbard
model is still a good description.

The projection to one band Hubbard model was also
implemented in Ref. [8]. The resulting hoppings re-
ported in Equ. (7)(8) of Ref. [8] suggest that the au-
thors of Ref. [8] interpreted the orbitals in their t2g tight-
binding model as the global axis basis xz, yz, xy. Here
we have argued that the orbitals should be interpreted
as the local axis basis which produces a projection result
[t̄0 = −(2t0/3) cos θ and t̄1 = 0] different from Ref. [8].

In summary we have performed the projection of the
electronic structure of Sr2IrO4 to the Jeff = 1/2 states
and carefully deduced the resulting one band Hubbard
model and its interpretation. We provide another per-
spective on the magnetic properties of Sr2IrO4 by viewing
it as a SU(2) invariant Hubbard/Heisenberg pseudospin-
1/2 model, but with a twisted relation (5) between the
observable moments and the pseudospin degrees of free-
dom, namely a g-tensor with staggered antisymmetric
component. One direct consequence is that the measured
uniform susceptibility in ab plane is actually a mixture of
uniform and staggered susceptibility of SU(2) invariant
Hubbard/Heisenberg model. Despite the complication of
strong SO interaction, different active orbitals and struc-
ture distortion, the effective one band Hubbard model of
Sr2IrO4 remarkably resembles the cuprates. We thus pro-
pose that doped Sr2IrO4 can realize high-temperature su-
perconductivity, and potentially other interesting physics
of the cuprates. By comparing the model parameters
we suggest that electron-doping of Sr2IrO4 will be the
analogue of hole-doping of the cuprates. This can be
achieved by La substitution of Sr, or O deficiency [18],
and maybe by field effect on thin films [22], or interfacing

with other oxides [23]. We hope these simple theoretical
observations will stimulate more experimental research
on Sr2IrO4.
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