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Although nuclear fission can be understood qualitatively as an evolution of the nuclear shape, a
quantitative description has proven to be very elusive. In particular, until now, there exists no model
with demonstrated predictive power for the fission fragment mass yields. Exploiting the expected
strongly damped character of nuclear dynamics, we treat the nuclear shape evolution in analogy with
Brownian motion and perform random walks on five-dimensional fission potential-energy surfaces
which were calculated previously and are the most comprehensive available. Test applications give
good reproduction of highly variable experimental mass yields. This novel general approach requires
only a single new global parameter, namely the critical neck size at which the mass split is frozen
in, and the results are remarkably insensitive to its specific value.

PACS numbers: 25.85.-w, 24.10.-i, 24.60.Ky, 24.10.Lx

Since nuclear fission was discovered in 1938 [1], its the-
oretical modeling has presented significant challenges. As
discussed already in the pioneering papers by Meitner
and Frisch [2] and Bohr and Wheeler [3, 4] in 1939, nu-
clear fission can be viewed qualitatively as an evolution
of the nuclear shape from that of a single compound nu-
cleus to two receding fragments. But the character of the
shape dynamics is still not well established. Nor is it yet
understood in detail how the original compound nucleus
is transformed into a variety of different fragmentations.
Therefore models for the resulting distribution of mass
splits have, until now, had limited predictive power.

The currently used methods for calculating fragment
yields include a variety of phenomenological approaches.
These invariably introduce a number of parameters
whose values are determined from adjustments to mea-
sured mass yields and other observables [5–7]. Such ap-
proaches typically reproduce experimental data in the re-
gions where their parameters were determined, but they
do not advance our understanding of fission and they also
tend to fail when applied to other regions.

Scission models consider the relative statistical weights
of various fragmentations at the time of scission [8, 9].
Such calculations are entirely static in nature so they
cannot take account of any dynamical effects. While
scission models often yield reasonable agreement with
the observed mass distributions, they are not universally
successful and their failures suggests that the resulting
divisions are sensitive to the pre-scission dynamics.

A number of dynamical models of fission have also
been developed. Most of these concentrate on the aver-
age evolution and they are often macroscopic. Langevin
treatments have been developed and applied for exci-
tations sufficiently high to render the dynamics macro-
scopic [10–12]. The presently most refined microscopic
approach uses the time-dependent generator-coordinate
method with Hartree-Fock-Bogoliubov states based on
an effective interaction [13, 14]. This treatment is rather

computer intensive and, consequently, only a few systems
have been studied so far. In particular, fragment mass
distributions have been calculated only for fission of 238U
[13] (though results for 240Pu are underway [15]).

We introduce here a novel method for calculating fis-
sion fragment mass distributions. It invokes the expected
dissipative character of the coupling between the nuclear
surface and the internal degrees of freedom [16] which, in
the Smoluchowski limit of strong coupling [17], gives the
shape dynamics the character of Brownian motion. Con-
sequently, once the potential energy is known as a func-
tion of deformation for a sufficiently rich family of fission
shapes, the required calculation is relatively straightfor-
ward, amounting effectively to a random walk on the
corresponding potential-energy surface. Because suitable
deformation-energy surfaces are available for essentially
all nuclei of potential interest [18], this treatment of the
fission dynamics provides a powerful predictive tool. We
describe here the key features of the approach and present
several test applications.

As mentioned above, our method exploits the limit of
strong dissipative coupling between the nuclear surface
motion and the internal degrees of freedom, as is char-
acteristic of systems dominated by one-body dissipation
[16]. The basic mechanism is the reflection of individ-
ual nucleons off the moving surface which generates a
dissipative force that is rather strong due to the nucle-
onic Fermi motion. The average nuclear shape evolu-
tion is then determined by the balance of the associated
dissipative force on a surface element and the conserva-
tive force due to the deformation energy. The resulting
equations of motion for the shape evolution contain no
adjustable parameters and dynamical fission calculations
yield remarkably good agreement with data for the most
probable fragment-kinetic energies [16].

Because the individual nucleons reach the moving sur-
face at random times, the associated force is stochastic, in
accordance with the fluctuation-dissipation theorem [19].
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The present treatment is the first implementation of the
stochastic part of the one-body mechanism for mononu-
clear dynamics in the Smoluchowski limit (it was imple-
mented early on for nucleon exchange in the dinucleus
[20] where it proved to be essential for understanding the
dependence of the mass distribution on energy loss in
damped nuclear reactions [21]).

In this physical picture, the evolution of the nuclear
shape is akin to Brownian motion. For the fissioning
nucleus, the shape plays the role of the Brownian body,
while the environment consists of the microscopic degrees
of freedom associated with a nucleon gas. For a given
shape, the nuclear surface is being continually assaulted
by those nucleons and the average of these impulses con-
stitues the associated friction force and the residual fluc-
tuations give the shape evolution a diffusive character.

While it is generally somewhat complicated to treat
this dynamical problem, considerable simplicity emerges
in the strongly damped limit which is expected to be a
reasonable starting point for the description of nuclear
dynamics [22]. Indeed, the strongly damped (Smolu-
chowski) limit of standard Brownian motion can be
treated as a random walk in configuration space and the
magnitudes of the inertial mass and the friction affect
only the overall time scale of the evolution but not the re-
sulting ensemble of random walks in configuration space.

We therefore simulate the shape evolution as a random
walk of the nuclear shape. More precisely, we consider a
parametrized multi-dimensional family of shapes suitable
for the fission process and let χ = (χ1, χ2, . . .) denote
the associated shape parameter. Let, at some point in
the evolution, the nuclear shape be that defined by a
given value of χ. Then, in the course of a brief time ∆t,
the accumulated effect of the nucleons impinging on the
surface is a stochastic change in the shape, ∆χ, which can
be sampled from the appropriate distribution P (∆χ; χ).

Because the potential energy V (χ) is given on a fixed
lattice {χi}, it is covenient to recast the process as a
random walk on that lattice. This can be accomplished
by standard methods. Due to detailed balance, the ra-
tio between the resulting transition probabilities for re-
verse processes equals the Boltzmann factor, P (i → i′) :
P (i′ → i) = exp(−∆V/T ), where ∆V ≡ V (χi′) − V (χi)
is the change in the potential energy associated with the
shape change from χi to χi′ and T is the (local) nuclear
temperature. Such a random walk can readily be simu-
lated by means of the familiar Metropolis procedure [23].

The above described procedure is merely preliminary
and serves to illustrate the utility of this type of ap-
proach. There is obviously a need to take account of the
metric in the shape space, which is related to the lattice
spacings in the employed table of deformation energies.
These were chosen in order to achieve typical changes of
|∆V | ≈ 1 MeV and our preliminary studies (involving
changing the spacings or introducing a specific metric
based on shape overlaps) suggest that this guiding prin-

ciple was quite reasonable, since only relatively extreme
modifications have a significant influence on the results.
A more formal treatment is being developed [26].

While the Smoluchowski shape trajectory is indepen-
dent of the overall friction strength, the present simpli-
fied treatment assumes that the friction tensor does not
introduce significant misalignments between the dissipa-
tive force and the resulting shape change. Our results
are reassuring in this regard and a thorough study of
this central issue is underway [24].

The five shape parameters used in Ref. [18] are approx-
imately orthogonal, especially near scission and, further-
more, the mass-asymmetry lattice is equidistant in the
fragment mass number Af . Therefore there should be no
significant Jacobian distortion involved in extracting the
mass distribution and, together with the insensitivity to
both mass and friction, this in turn should render the
extracted P (Af) rather robust, reflecting primarily the
features of the potential-energy surface, V (χ).

For the potential energy, V (χ), we employ tabulated
values calculated for the three-quadratic-surface shape
family [25] with the macroscopic-microscopic finite-range
liquid-drop model [18]. For more than five thousand nu-
clei, these tables provide the potential energy of over five
million shapes in terms of five convenient shape param-
eters. They are the most comprehensive available and
have proven to form a good framework for understand-
ing many important features of fission [26].

The temperature is obtained by the Fermi-gas formula,
T 2 = [E∗−V ]/aA, where E∗ is the total excitation energy
of the nucleus and aA = A/(8 MeV) is the level-density
parameter. While appropriate for the present explorative
study, this simple approximation may need future refine-
ment, such as inclusion of pairing and shell effects.

In order to illustrate the quantitative utility of the
dynamical treatment described above, we have used it
to calculate the fission fragment mass distribution for a
number of cases of practical interest. (The calculated
mass yields have been reexpressed as charge yields by
means of a simple scaling, P (Zf ) = P (Af )A0/Z0.)

Considering the fission process as a temporal evolu-
tion of the nuclear shape, we combine the original fission
theory concepts introduced by Bohr [3] with the recogni-
tion that the associated statistical distribution of nuclear
shapes is not established instantly when the nucleus is ag-
itated (by the absorption of a neutron or a photon) but
builds up over time. Our key assumption is that this
equilibration process will terminate at scission, i.e. when
the system finds itself with a shape for which the neck
radius cneck is so small that the nucleus will irreversibly
proceed to separate into two distinct fragments without
any further change in the mass asymmetry. We define
scission to occur when cneck has decreased to a specified
value c0. We employ the value c0 = 2.5 fm but our results
tend to be rather insensitive to the precise value.

By discouraging but not prohibiting uphill steps, the
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FIG. 1: Calculated and measured charge yields for fission of
240Pu and 236,234U. The data in (a–c) are for (nth,f) reactions
leading to E∗

≈ 6.5 MeV [27], while the data in (d) is for (γ,f)
reactions leading to E∗

≈ 8 − 14 MeV; they include contami-
nation from fission of 233U (≈15%) and 232U (≈5%) [28]; the
corresponding calculation was made for E∗= 11 MeV.

Metropolis sampling method ensures that a sufficiently
long walk will visit each shape in accordance with its ap-
propriate statistical weight. Initially the nuclear shape is
close to that of the ground state, where it resides before
being agitated. The shape will then typically make excur-
sions around this favored shape. However, every now and
then, according to the statistical probability, the path in
deformation space may lead over the fission barrier and
the shape is then more likely to continue towards division
than to revert to a compact shape.

It is thus evident that the random walk will tend to
wander around inside the barrier for many steps before
eventually surmounting it. To speed up the calcula-
tion without unduly influencing the final outcome, we
have augmented the potential energy by a bias term,
Vbias = V0 Q2

0/Q2, where Q is the quadrupole moment
of the deformed nucleus and Q0 represents the average
ground-state quadrupole moment of deformed actinide
nuclei. Thus, in the region of compact shapes, where Q
is small, Vbias will encourage increases of Q, while it will
have relatively little effect for highly deformed shapes
where the mass division is decided. The resulting mass
yields are not sensitive to variations in the bias strength
V0, as long as it remains small (we use V0 = 15 MeV).

Figure 1 shows the calculated charge distributions for
239Pu, 235,233U(nth, f), and 234U(γ, f) together with the
corresponding experimental data. (We focus on charge
distributions to avoid issues related to neutron evapora-
tion.) The results agree quite well with the data which is
remarkable because no parameter was adjusted. The fea-
tures of the calculated yields are thus determined essen-
tially only by the structure of the potential-energy sur-
faces. (The odd-even staggering seen in the data is due
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FIG. 2: Calculated charge yields for four even-even thorium
isotopes compared to experimental data [28].

to pairing and this effect is not present in the potential-
energy surfaces because existing pairing models treat the
fissioning nucleus as a single system, even near scission.)

The most noticeable discrepancy is an underestimate
of the symmetric yield for the (γ,f) data (Fig. 1d). These
were obtained with photons having energies of 8–14 MeV
[28], while the calculations were made for E∗ = 11 MeV.
Furthermore, the experimental data contain contamina-
tions from multi-chance fission.

We also compare with a sequence of thorium isotopes
which constitute a more challenging test because their
yield curves change qualitatively from the light to the
heavy isotopes. Figure 2 shows calculated and measured
charge yields for 222,224,226,228Th. As for 234U(γ, f) dis-
cussed above, these data [28] were obtained with pho-
tons having a wide energy range and they contain multi-
chance contaminations. Although the differences be-
tween calculation and experiment are larger than seen
in Fig. 1, the onset of asymmetric fission towards the
heavier thorium isotopes is quite well reproduced. In
fact, the deviations of the model results from the corre-
sponding data are smaller than the differences between
neighboring experimental results, which in turn differ by
just one occupied neutron orbital.

The generality of the approach makes it possible to
gain new insight about the fission process from the re-
maining differences between calculated results and ex-
perimental data. For example, the energy dependence of
the symmetric-valley yield in 234U (Fig. 1c-d) can be im-
proved by refining the shape dependence of the temper-
ature and an alternate shape dependence of the Wigner
term in the potential energy [29] moves the asymmetric
peaks in Fig. 2c into agreement with experiment.

The case of 222Th (Fig. 2a) is particularly instructive,
because the calculation yields a symmetric mass distri-
bution even though the nuclear shape at the saddle point
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of the potential energy surface is reflection asymmetric
with a mass ratio of 129:93. This remarkable finding
implies that either the path from the isomeric minimum
(which is located at a symmetric shape) to scission does
not cross the potential barrier in the most favorable re-
gion (i.e. near the saddle point) or the shape distribution
reverts from asymmetric to symmetric during the descent
from saddle to scission. In either case, the result inval-
idates the hypothesis (see e.g. Refs. [7, 30–32]) that the
character of the mass distribution, whether symmetric or
asymmetric, is determined by the saddle shape. Rather,
our result suggests that the fragment mass distribution
is determined by the relatively complicated structure of
the potential-energy landscape between the isomeric min-
imum and scission. Therefore any plausible model of the
mass yields must take this into account.

It is interesting to compare the calculated mass yields
with the result of statistical scission models [8, 9]. We
have found that while a statistical sampling of our scis-
sion shapes often (but not always) lead to reasonable
agreement with the data, it is never as good as the results
of the random walk, suggesting that the shape evolution
in the pre-scission landscape generally plays an impor-
tant role for the resulting mass distribution [24].

In summary, we have presented a novel treatment of
the shape dynamics in moderately excited nuclei and we
have illustrated its practical and quantitative utility by
using it to calculate fission fragment yields for several
cases that have been studied experimentally, including
some particularly challenging ones. Relative to previ-
ously employed methods, the present approach represents
a significant advance with regard to predictive power.
(We have here concentrated on nuclei with 5-20 MeV ex-
citation but we plan to explore extensions to both higher
and lower energies, including spontaneous fission.)

Taking explicit account of the equilibration process,
our treatment extends in a natural way the compound
nucleus concept invoked in 1939 to describe many aspects
of the newly discovered fission phenomenon. It builds
directly on the general picture of low-energy nuclear dy-
namics as being dominated by the dissipative interac-
tion between the evolving surface and individual nucle-
ons. This mechanism causes the nuclear shape dynamics
to resemble Brownian motion and the present dynami-
cal treatment is the first to treat the resulting stochastic
shape evolution in the Smoluchowski limit where the in-
ertial mass is immaterial. A particularly attractive fea-
ture of the approach is its generality: once the potential
energy has been calculated as a function of deformation,
for a sufficiently rich class of mononuclear shapes, the dy-
namics can readily be studied. Studies are well underway
to clarify the importance of the shape metric, the friction
tensor, and pairing and shell effects in the entropy [24].

We have here concentrated on applications of this
treatment to the calculation of fission fragment mass
distributions for which a variety of data is available.

Importantly, only a single new parameter is required
for this purpose, namely the critical neck radius char-
acterizing a scission shape, and the mass yields are
rather insensitive to its specific value. This degree of
robustness gives the method unprecedented predictive
power with regard to fission-fragment mass distributions.
In particular, it can be readily employed in regions of the
nuclear chart that are of special astrophysical interest
and it may, for example, help to clarify the importance
of fission recycling for the r-process [33, 34].
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