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We demonstrate agreement between measurements and ab initio calculations of the 

frequency shifts caused by distributed cavity phase variations in the microwave cavity 

of a primary atomic fountain clock. Experimental verification of the finite element 

models of the cavities gives the first quantitative evaluation of this leading uncertainty 

and allows it to be reduced to δν/ν=±8.4×10−17. Applying these experimental techniques 

to clocks with improved microwave cavities will yield negligible distributed cavity 

phase uncertainties, less than ±1×10−17. 
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Atomic clocks deliver the most accurate measurements of any physical observable, frequency 

and time. Their precision enables global positioning systems and stringent tests of fundamental 

physics. The most accurate clocks realize the definition of the SI second and the widely-used 

international atomic time, TAI. The accuracy of TAI comes from an ensemble of laser-cooled 

atomic fountain clocks from around the world, which are currently limited by first order Doppler 

shifts [1-7]. These Doppler shifts occur when the cold but moving atoms interact with a field 

inside the microwave cavity that has a spatial phase variation (Fig. 1a) because it is not a totally 

pure standing-wave. The scale for Doppler shifts is extremely large, 1 part in 108. The shift is 

highly suppressed by a velocity reversal from gravity in Fig. 1a, and the purity of the standing 

wave. Uncertainty estimates are as low as ±3×10−16, excepting a few cases where it is incorrectly 

evaluated [1-7]. Here, we present precise measurements of a primary clock’s frequency and large 



finite element calculations of the cavity fields. With no free parameters, these measurements are 

the first stringent test and quantitative confirmation of the key behaviors of this currently 

dominant systematic error. The validation of the model allows us to significantly reduce our 

Doppler uncertainty, to 8.4×10−17 and shows that optimized cavities will have negligible phase 

variations yielding uncertainties less than ±1×10−17, thus removing the largest barrier to 

significantly better primary clock accuracy. 

This Doppler shift is known as the distributed cavity phase (DCP) frequency shift. Although 

DCP shifts have been considered for 35 years, no measurements have reasonably agreed with 

calculations [8]. There has been little progress because the phase of the intra-cavity field cannot 

be accurately mapped and the calculations are difficult since the holes in the cavities, required 

for the atomic traversals, produce large perturbations [9]. Frequency measurements have given 

indirect information about the phase variations, but often the associated frequency shifts were 

misattributed to other systematic errors [5]. Recently, a combination of finite element and 

analytic models have elucidated the behaviors of the fields and their DCP shifts [7,9]. 

Large, densely-meshed finite element calculations are required to accurately calculate the 

fields in clock cavities. All fountains clocks contributing to TAI use cylindrical TE011, 

centimeter-size cavities with feeds at the cavity midplane and holes in the endcaps (Fig.1a). The 

sharp “corner” of these holes produce nearly singular fields, to a scale as small as the skin depth 

[9], 0.7 μm for copper at the cesium clock transition frequency, 9.2 GHz. This requires dense 

meshing, making direct 3D solutions unfeasible. However, the cylindrical symmetry allows the 

field to be expressed as an azimuthal Fourier series of 2D finite element solutions [7,9]. We write 

the microwave magnetic field as the sum of a large standing wave H0(r) and a small field, 

g(r)=Σgm(ρ,z) cos(mφ), which describes the cavity feeds and wall losses [7]. 
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Here Δω is the detuning of the cavity from resonance and Γ is the cavity fullwidth. The fields 

have an e−iωt time dependence and the phase of the field is Φ≈−gz(r)/H0z(r), since only the ẑ  

component couples to the atoms [6,7]. The gm(ρ,z) components are proportional to ρm for 

ρ→0 and only 3 terms of this series, m=0, 1, and 2, contribute significantly because the atoms 

pass through the cavity near its axis. These terms describe power flow from the feed(s) to the 

walls with various symmetries: m=0, to the endcap walls, m=1, from one side of the cavity to the 

other, and m=2, a quadrupolar flow from opposing feeds. We next describe our experimental 

techniques to measure and minimize the DCP shift of each azimuthal component in the FO2 dual 

Cs/Rb clock at SYRTE (Systèmes de Référence Temps-Espace) [1]. 

m=0 phase variations: The g0(ρ,z) term describes power supplied at the cavity midplane and 

absorbed on the endcaps. It creates large longitudinal phase gradients, which are azimuthally 

symmetric for homogeneous endcap surface resistances, and produces frequency shifts that 

depend strongly on the amplitude b of the microwave field, as shown in the top inset of Fig. 2a. 

Here, for normal clock operation, power is supplied to both feeds and π/2 pulses on the upward 

and downward cavity traversals produce maximum Ramsey contrast near b=1 [10]. The 

frequency shift is singular near b=4, 8, and 10 where the Ramsey fringe contrast goes to 0 since 

the pulse areas are multiples of π. We therefore plot in Fig. 2 the well-behaved difference in 

transition probability δP= (δP+ − δP−)/2, at detunings of ±Δν/2, where Δν=0.822 Hz is the 

transition fullwidth. We extract δP from the measured frequency shift and Ramsey fringe 

contrast. For optimal amplitude, π/2 pulses, the contrast is essentially 100% and δP =π δν/(2 Δν). 

The DCP shifts in Fig. 2a are small at b=2,6 and large at b=4,8 because the phase is 

symmetric about the cavity midplane [7]. For 9π/2 pulses, we observe a DCP shift of 6.5×10−15, 

20 times larger than the clock’s uncertainty for normal operation. Although this m=0 DCP shift 

must exist in all current primary clocks, there is only one other report of a comparable shift [11]. 

These large shifts occur even though there are negligible transverse variations of the phase. 

Instead, the transverse variation comes from H0z(r), which gives different pulse areas to the 



expanding cloud on the upward and downward passages [7]. With no free parameters, our 

measurements versus microwave amplitude quantitatively agree with the calculated atomic 

response to the finite-element fields [12]. The left inset shows that the DCP shift is extremely 

small at low amplitude, b≤1, because the effective phase is simply the longitudinal average, 

which has a very small transverse variation [7]. The predicted shift at optimal amplitude is 

δP=7×10−8, corresponding to δν/ν=4×10−18, which we take as our m=0 DCP uncertainty. 

To calculate δP and the frequency shifts, we independently developed two Monte Carlo 

simulations. One integrates the atomic response to the fields over each random fountain 

trajectory while the other first calculates an effective phase δΦm for a cavity traversal [7], and 

then averages δΦm over random trajectories. Both calculations include the spatially 

inhomogeneous detection of the atoms and the apertures in the fountain that cut the atomic 

clouds. The two simulations agree and, using the measured cloud temperature and size, 

reproduce the microwave amplitude dependence of the Ramsey fringe contrast and Rabi flopping 

for the two cavity passages. 

m=1 phase gradients: The m=1 field component g1(ρ,z) produces a phase gradient as depicted in 

Fig. 1a. If an m=1 component exists, a tilt of the fountain, or an off-center initial launch position, 

produces a DCP shift because the average positions of the atoms, and the phases of the field, on 

the two passages, are different. We probe m=1 DCP shifts by intentionally tilting the entire 

fountain and measuring the frequency difference ν0 −νπ, by feeding the cavity alternately at φ=0 

and π [13]. For tilts as large as ±1.6 mrad and (1,3,5,7) π/2 pulses, the frequency difference in 

Fig. 1b is proportional to the tilt and vanishes at the same tilt to within ±40 μrad. Using the zero 

crossing, we can  align the fountain more accurately than our early mechanical method and also 

properly account for any irregularities of the atomic distribution. However, long-term 

fluctuations of the position and velocity of the atomic cloud limit the alignment to ±0.1 mrad. 

Fig. 2b shows the m=1 DCP shift, ν0 −νπ, versus microwave amplitude for a tilt of 1.6 mrad. The 



magnitude of m=1 DCP shifts is inversely proportional to the loaded cavity Q [7] and very large 

for a single feed. 

During normal clock operation, it is crucial to minimize the potentially large m=1 DCP 

shifts. We balance the feeds by adjusting their amplitudes so that the clock’s frequency, 

measured against another cesium clock, has no tilt dependence for π/2 pulses to ±2.2x10−16 

mrad−1. We then align the fountain to have no tilt to within ±0.1 mrad (crossing point in Fig. 1b) 

along the feed axis, reducing this m=1 DCP error to ±2.2×10−17, limited by our balancing and 

trajectory fluctuations. Our method differs from the currently widely used technique which 

balances the amplitude of H0z(r) (pulse area) from each feed but does not eliminate the m=1 tilt 

sensitivity when the feeds have different reflectivities from their external circuitry. In the past, 

when we balanced H0z(r), we had a significant residual tilt sensitivity of 8x10−16 mrad−1. 

We also carefully balance the phase of both cavity feeds [6]. While it’s accepted that a phase 

imbalance directly excites g1(ρ,z), there are disagreements about the sensitivity [14]. Our model 

clarifies the disagreements, showing that the DCP shift due to phase imbalances depends on the 

microwave cavity detuning and vanishes at resonance [7]. In Fig. 3, we experimentally observe 

this dependence with a large tilt and π/2 pulses. As expected, there is no shift for a nearly 

resonant cavity (black) since the g1(ρ,z) that is excited in Eq. 1 is imaginary (phase of π/2) so 

that Φ=Im[Hz(r)]/Re[Hz(r)]=0 [7]. But, as the cavity is detuned (blue and red), each feed 

acquires an additional phase shift relative to H0(r) and the feed with the smaller phase shift 

supplies more power, yielding Im[Hz(r)]=iΔω/Γ g1(ρ,z) cos(φ). In Fig. 3 we measure the clock’s 

frequency with a phase difference, ν(Δψ), and for only a left (right) feed, ν0(π), and plot 

ν(Δψ)−(ν0+νπ)/2, normalized by ν0−νπ. The lines are fits to the prediction Δω/Γ tan(Δψ/2) 

[7,15,16]. 

Without independent feeds at φ= ±π/2, current clocks cannot null the tilt perpendicular to the 

feeds as above. A DCP shift for perpendicular tilts can only come from inhomogeneous wall 

losses that produce a g1(ρ,z)sin(φ). Despite careful machining and special attention to surface 



finish, Fig. 1c (solid black line) shows a differential perpendicular tilt sensitivity for two 5π/2 

pulses relative to π/2 pulses of 8.4(2.6)×10−16 mrad−1, suggesting conductivity inhomogeneities 

in our cavity. This dictates that the perpendicular m=1 DCP shift must be evaluated and it in fact 

is the largest contribution to our DCP uncertainty. To date, all primary clock evaluations have 

taken m=1 DCP shifts for perpendicular tilts to be 0 by symmetry [1-6,13]. Finite element 

modeling suggests that local surface resistances must be at least 20% larger than for a pristine 

copper surface. The losses at each wall position can produce very different δP(b); for example, 

b=1 and 5 can have the same δP or there can be a large δP at b=1 but δP=0 at b=5 [7]. Thus, 

differential measurements of the clock’s frequency versus amplitude and perpendicular tilt alone 

cannot establish a stringent m=1 DCP uncertainty [17]. 

Here, we establish a DCP uncertainty for perpendicular tilts by measuring the frequency 

difference of the FO2 Cs and Rb clocks at optimal amplitude versus a common tilt. The 

difference in Fig. 1c (red) is 1(8)×10−17 mrad−1, consistent with no tilt sensitivity. Then, to null 

the tilt, we maximize the number of atoms returning through the cavity. An image shows that the 

initial cloud position is centered to ±2 mm, ensuring no perpendicular tilt within ±0.7 mrad and 

giving an uncertainty of ±6×10−17 [18]. A cavity with 4 independent feeds, at φ=0, π, and ±π/2, 

would allow a more precise alignment and reduce our m=1 DCP uncertainty [7]. 

m=2 phase variations: While the m=2 quadrupolar phase variation is maximally excited by feeds 

at φ=0 and π, its ρ2 cos(2φ) radial dependence gives small phase shifts. If the cloud is small but 

not centered, the atoms can experience a non-zero phase on the upward cavity traversal relative 

to the average phase on the downward passage, resulting in a DCP shift (Fig. 2c dashed). On the 

downward passage, the density is nearly uniform so the average m=2 phase for the entire cloud is 

zero. However, a spatially inhomogeneous detection effectively modulates this uniform 

distribution, also producing a DCP shift. We measure the transition probability by imaging the 

fluorescence from a Gaussian laser beam, giving a higher detection efficiency at φ=±π/2 than 

φ= 0 and π. Τhe model (Fig. 2c solid) predicts a DCP clock correction of −7.5×10−17. We take 



half the correction as the uncertainty and add it in quadrature to the uncertainty for a 2mm cloud 

offset, to get ±5.5×10−17. This can be made negligibly small by making the imaging uniform, 

rotating our 2-feed cavity by π/4, or, preferably, using 4 cavity feeds. 

Conclusions: With no free parameters we demonstrate agreement between measurements and 

calculations of the distributed cavity phase (DCP) shift, a first order Doppler shift, in a primary 

atomic clock. The verification of the model allows a quantitative evaluation and reduction of this 

currently largest systematic error for the best atomic clocks that define TAI. Three azimuthal 

components, m=0, 1, 2, produce significant DCP shifts. By evaluating each component, we 

improve our DCP uncertainty to δν/ν =±8.4×10−17, limited by the tilt sensitivity to m=1 phase 

gradients perpendicular to the cavity feeds and m=2 phase variations [19]. We demonstrate the 

importance of balancing feeds by measuring DCP shifts versus tilt and probing DCP shifts due to 

inhomogeneous surface resistances. Significant reductions of the DCP uncertainty, to less than 

±1×10−17, will be possible using a cavity with four independent, azimuthally-distributed feeds 

[7]. This would allow precise alignment of the fountain tilt in both directions to reduce the m=1 

DCP shifts, and also make m=2 shifts negligible. Improved cavity designs based on this 

validated model can further eliminate the m=0 longitudinal phase gradients, even at high 

microwave amplitudes [7]. Amplitude dependence can then be used to more precisely evaluate 

several systematic effects, including the atom-interferometric lensing of the atomic wave packets 

by the cavity’s microwave field [20]. 

We acknowledge the assistance of SYRTE technical services and support from the NSF, Penn 

State, and la Ville de Paris (KG). SYRTE is UMR CNRS 8630. 
 

1. J. Guéna et al., IEEE Trans. on UFFC 57, 647 (2010). 

2. V. Gerginov et al., Metrol. 47, 65 (2009). 

3. K. Szymaniec et al., Metrol. 47, 363 (2010). 

4. F. Levi et al., Metrol.43, 545 (2006). 

5. S. R. Jefferts et al., IEEE Trans. on UFFC 52, 2314 (2005). 
 



 

6. See R. Wynands and S. Weyers, Metrol. 42, S64 (2005) and references therein. 

7. R. Li and K. Gibble, Metrol. 47, 534 (2010). 

8. A. de Marchi et al., IEEE Trans. Instrum. Meas. 37, 185 (1988). 

9. R. Li and K. Gibble, Metrol. 41, 376(2004). 

10. As in [7], b=1 is defined as a π/2 pulse when averaged over the entire aperture. Since the 

atomic cloud is small on the upward passage, the atoms experience a larger pulse so our 

maximum Ramsey fringe contrasts occur at b’s slightly smaller than 1,3,5,… . 

11. S. Weyers et al., Proc. 21st EFTF and 2007 IEEE Int. Freq. Contr. Symp., 52 (2007). 

12. Our cavity’s radius is 25 mm, height 26.87 mm, endcap holes 12 mm diameter, and loaded Q 

7000. In our model, we fit the cavity height and length of the TM mode filters [1], giving 

m=0 and 1 modes at 9.1926 and 9.6436 GHz. 

13. F. Chapelet et al., Proc. 20th EFTF, (2006). 

14. S. Yanagimachi et al., Japan. J. Appl. Phys. 44, 1468 (2005); M. Kumagai et al., Metrol. 45, 

139 (2008). 

15. A small offset was included, due to a problem in the microwave circuitry, which has been 

corrected. 

16. J. Guéna et al., Proc. of the 24th EFTF, (2010). 

17. If the sensitivity to perpendicular tilt is significantly different vs amplitude (b=1,3,5), it could 

be used to find zero tilt, but the m=0 DCP shift is a potentially difficult systematic offset  

18. We allow the Rb clock to also have an m=1 shift, but 3 times smaller, as measured for tilts 

along the feeds. 

19. We have not evaluated DCP shifts due to machining imperfections in the waveguide cutoffs 

that could produce large fields and modify the density distribution [7]. These can be 

eliminated with additional apertures to remove atoms traveling near the cutoff walls. 

20. K. Gibble, Phys. Rev. Lett. 97, 073002 (2006). 



Fig. 1. a) Schematic of distributed cavity phase (DCP) frequency shifts. Feeding a microwave 

cavity from only one side produces a phase gradient in the cavity and gives a Doppler shift if the 

atomic fountain is tilted. b) Frequency differences for feeding at φ=0 or π versus tilt along the 

cavity feeds for 1,3,5, and 7π/2 pulses. All differences are 0 when the fountain has no tilt. c) The 

black circles are the frequency differences for 5π/2 pulses and π/2 pulses versus tilt 

perpendicular to the feeds, suggesting an inhomogeneous surface resistance. The dashed line is 

the predicted m=0 DCP shift. The red squares are the differences of the Cs and Rb clock 

frequencies for π/2 pulses, consistent with no m=1 DCP shift for perpendicular tilts. 

Fig. 2. Measured (squares) and calculated (lines) change in transition probability δP from DCP 

shifts versus microwave amplitude b, where 1,3,5 … π/2 pulses (black dots) are near b=1,3,5 

…[10]. a) Azimuthally symmetric m=0 DCP shifts produce a negligible shift at b=1 (left inset) 

and have a large amplitude dependence. In the top inset, the DCP frequency shift is large and 

singular near b=4 and 8 (2π and 4π pulses). b) m=1 DCP shifts, given by the clock’s frequency 

difference between feeding the cavity at φ=0 and π with a fountain tilt of 1.6 mrad. Balancing the 

feeds and nulling the tilt minimizes this shift. c) Predicted m=2 DCP shift for FO2 with an 

effective 9.9 mm detection laser beam waist (solid) and an initial cloud offset of 2mm at launch 

with uniform detection (dashed). 

Fig. 3. Normalized frequency shift versus phase imbalance of the cavity feeds for a 1.6 mrad tilt 

along the feeds. As the cavity is tuned to resonance (black), the DCP shift goes to 0. The solid 

lines are fits to A tan(Δψ/2) and A agrees with the prediction, Δω/Γ. 










