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We propose and analyze an interface between a topological qubit and a superconducting flux
qubit. In our scheme, the interaction between Majorana fermions in a topological insulator is
coherently controlled by a superconducting phase that depends on the quantum state of the flux
qubit. A controlled phase gate, achieved by pulsing this interaction on and off, can transfer quantum
information between the topological qubit and the superconducting qubit.

Introduction Topologically ordered systems are in-
trinsically robust against local sources of decoherence,
and therefore hold promise for quantum information pro-
cessing. There have been many intriguing proposals for
topological qubits, using spin lattice systems [1], p+ip
superconductors [2], and fractional quantum Hall states
with filling factor 5/2 [3]. The recently discovered topo-
logical insulators [4] can also support topologically pro-
tected qubits [5]. Meanwhile, conventional systems for
quantum information processing (e.g., ions, spins, pho-
ton polarizations, superconducting qubits) are steadily
progressing; recent developments include high fidelity op-
erations using ions [6] and superconducting qubits [7],
long-distance entanglement generation using single pho-
tons [8, 9], and extremely long coherence times using nu-
clear spins [10].

Interfaces between topological and conventional quan-
tum systems have also been considered recently [11, 12].
Hybrid systems [13, 14] may allow us to combine the
advantages of conventional qubits (high fidelity readout,
universal gates, distributed quantum communication and
computation) with those of topological qubits (robust
quantum storage, protected gates). In this paper, we
propose and analyze an interface between a topological
qubit based on Majorana fermions (MFs) at the surface
of a topological insulator (TI) [5] and a conventional su-
perconducting (SC) flux qubit based on a Josephson junc-
tion device [15]. The flux qubit has two basis states, for
which the SC phase of a particular SC island has two
possible values. In our scheme, this SC phase coherently
controls the interaction between two MFs on the surface
of the TI. This coupling between the MFs and the flux
qubit provides a coherent interface between a topological
and conventional quantum system, enabling exchange of
quantum information between the two systems.

Topological Qubit The topological qubit can be en-
coded with four Majorana fermion operators {γi}i=1,2,3,4,
which satisfy the Majorana property γ†i = γi and
fermionic anti-commutation relation {γi, γj} = δij . A
Dirac fermion operator can be constructed from a pair
of MFs Γ†ij = (γi − iγj) /

√
2, defining a two dimensional

Hilbert space labeled by nij = Γ†ijΓij = 0, 1. The two
basis states for the topological qubit, each with an even
number of Dirac fermions, are |0〉topo = |012034〉 and
|1〉topo = |112134〉.
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FIG. 1: (color online). On the surface of TI, patterned SC
islands can form (a) STIS quantum wire, (b) flux qubit, and
(c) hybrid system of topological and flux qubits. (a) Two MFs
(red dots) are localized at two SC tri-junctions, connected
by an STIS quantum wire (dashed blue line). The coupling
between the MFs is controlled by the SC phases φd = ε and
φu = −π. (b) A flux qubit consists of four JJs connecting four
SC islands (a,b,c,d) in series, enclosing an external magnetic
flux fΦ0. (c) The hybrid system consists of an STIS wire
and a flux qubit. The STIS wire (between islands d and u)
couples the MFs, with coupling strength controlled by the flux
qubit. The SC phase φc can be tuned by a phase-controller
(not shown), and φd = φc ± θ∗4 with the choice of ± sign
depending on the state of the flux qubit.

The MFs can be created on the surface of a TI pat-
terned with s-wave superconductors [5]. Due to the
proximity effect [16], Cooper pairs can tunnel into the
TI; hence the effective Hamiltonian describing the sur-
face includes a pairing term, which has the form V =
∆0e

iφψ†↑ψ
†
↓ + h.c. (where ψ†↑, ψ

†
↓ are electron operators),

assuming that the chemical potential is close to the Dirac
point [17]. Here φ is the SC phase of the island. Each
MF is localized at an SC vortex that is created by an
SC tri-junction (i.e., three separated SC islands meet-
ing at a point, see Fig. 1(a)). The MFs can inter-
act via a superconductor-TI-superconductor (STIS) wire
(Fig. 1(a)) that separates the SC islands d and u with
φd = ε and φu = −π, respectively. For a narrow STIS
wire with width W � vF /∆0, the effective Hamiltonian
is

HSTIS = −ivF τx∂x + δετ
z, (1)

where vF is the effective fermi velocity, δε =
∆0 cos (φd − φu) /2 = −∆0 sin ε/2, and τx,z are Pauli
matrices acting on the wire’s two zero energy modes [5].
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As shown in Fig. 1(a), the STIS wire connects two local-
ized MFs (indicated by two red dots at the tri-junctions)
separated by distance L; these are two of the four MFs
comprising the topological qubit. The coupling between
the MFs (denoted as γ1 and γ2) via the STIS wire can be
characterized by the Hamiltonian H̃MF

12 = iE (ε) γ1γ2/2,
with an induced energy splitting E (ε) depending on the
SC phase ε. The effective Hamiltonian for the topological
qubit is

HMF
12 = −E (ε)

2
Ztopo. (2)

where Ztopo = (|0〉 〈0| − |1〉 〈1|)topo.
In Fig. 2(a), we plot E (ε) as a function of a dimen-

sionless parameter Λε ≡ ∆0L
vF

sin ε
2 . For Λε � 1 and 0 <

ε < π/2 [5], the energy splitting E (ε) ≈ 2 |δε| e−Λε ∼ 0
is negligibly small for localized MFs at the end of the
wire, as the wavefunctions are proportional to e−Λεx/L

and e−Λε(L−x)/L. On the other hand, for Λε . 1, the
two MFs are delocalized and E (ε) becomes sensitive to
ε. We emphasize that E (ε) is a non-linear function of ε
[18], which enables us to switch the coupling on and off.

Flux Qubit The SC island d can also be part of an SC
flux qubit (Fig. 1(b)), with φd = ε = ε0 or ε1 depending
on whether the state of the flux qubit is |0〉flux or |1〉flux as
shown in Fig. 2(b,c). Therefore, the Hamiltonian HMF

12

couples the flux qubit and the topological qubit. As-
suming a small phase separation ∆ε ≡ ε0 − ε1 � π/2,
we can switch off the coupling HMF

12 by tuning ε0,1 to
satisfy vF /L∆0 � ε0,1 < π/2 [5], so that the MFs
are localized and uncoupled with negligible energy split-
ting E

(
ε0
)
≈ E

(
ε1
)
∼ 0. We can also switch on

the coupling HMF
12 by adiabatically ramping to the pa-

rameter regime ε0,1 . vF /L∆0 to induce a nonnegli-
gible

∣∣E (ε0
)
− E

(
ε1
)∣∣ ∼ ∆0∆ε. Because flux qubit

designs with three Josephson junctions (JJs) [15, 19]
are not amenable to achieving a small phase separation
∆ε� π/2 [18], we are motivated to modify the design of
the flux qubit by adding more JJs.

As shown in Fig. 1(b), our proposed flux qubit con-
sists of a loop of four Josephson junctions in series that
encloses an applied magnetic flux fΦ0 (f ≈ 1/2 and
Φ0 = h/2e is the SC flux quantum). The Hamiltonian
for the flux qubit is

Hflux = T + U, (3)

with Josephson potential energy U =∑
i=1,2,3,4EJ,i (1− cos θi), and capacitive charging

energy T = 1
2

∑
i=1,2,3,4 CiV

2
i . For the i-th JJ, EJ,i is

the Josephson coupling energy, θi is the gauge-invariant
phase difference, Ci is the capacitance, and Vi is the
voltage across the junction [15, 19]. In addition, there
are relations satisfied by the phase accumulation around
the loop

∑
i θi + 2fπ ≡ 0 (mod 2π) and the voltage

across each junction Vi =
(

Φ0
2π

)
θ̇i [16]. The parameters

are chosen as follows: the first two JJs have equal
Josephson coupling energy EJ,1 = EJ,2 = EJ , the third
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FIG. 2: (color online). (a) The energy splitting E (ε) (in
units of ∆E = vF /L) as a function of Λε = ∆0L

vF
sin ε/2.

(b) A contour plot of potential energy U as a function of
{θ1, θ2, θ4} with θ3 = π − θ1 − θ2 − θ4. There are two poten-
tial minima associated with flux qubit states |0〉 and |1〉. (c)
A contour plot of U as a function of {θ1, θ4} with θ1 = θ2

and θ3 = π − 2θ1 − θ4. (d) Marginal probability distribu-
tions of θ4 associated with states |0〉 (blue solid line) and
|1〉 (red dashed line). The parameters are EJ/EC = 80 and
{EJ,i/EJ}i=1,2,3,4 = {1, 1, α = 0.8, β = 10}.

JJ has EJ,3 = αEJ with 0.5 < α < 1, and the fourth
JJ has EJ,4 = βEJ with β � 1. For JJs with the same
thickness but different junction area {Ai}, EJ,i ∝ Ai
and Ci ∝ Ai. The charging energies can be defined
as EC,1 = EC,2 = EC = e2

2C1
, EC,3 = α−1EC and

EC,4 = β−1EC . For these parameters and f ≈ 1/2, the
system has two stable states with persistent circulating
current of opposite sign. We identify the flux qubit basis
states with the two potential minima |0〉flux = |{θ∗i }〉
and |1〉flux = |{−θ∗i }〉 (modulo 2π), as illustrated in
Fig. 2(b,c).

When β → ∞, we may neglect the fourth junction
and this system reduces to the previous flux qubit design
with three JJs [15, 19]. For β � 1, there is a small
phase difference across the fourth JJ [18], θ4 = ±θ∗4 ≈
±
√

4α2−1
2α

1
β , where the choice of ± sign depends on the

direction of the circulating current. We may write θ4 =
Zfluxθ

∗
4 , with Zflux = (|0〉 〈0| − |1〉 〈1|)flux. The fourth JJ

connects SC islands c and d, and if we fix φc relative to φu
with a phase-controller [25], then φd will be ε0 = φc + θ∗4
or ε1 = φc − θ∗4 depending on the state of the flux qubit.
The separation

∆ε ≈
√

4α2 − 1
α

1
β

(4)

between the two possible values of φd becomes small, as
we desired, when β is large.

Aside from this small phase separation, there are also
quantum fluctuations in θ4 due to the finite capacitance.
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Near its minimum at ±{θ∗i }, the potential energy is ap-
proximately quadratic; therefore, for β � 1, the dynam-
ics of θ4 can be well described by a harmonic oscillator
(HO) Hamiltonian

HHO =
p2
θ4

2M4
+
EJ,4

2
(θ4 − Zfluxθ

∗
4)2

, (5)

where the effective mass is M4 = 1
8EC,4

and the canon-
ical momentum pθ4 satisfies [θ4, pθ4 ] = i (with ~ ≡
1). We may rewrite HHO =

(
a†a+ 1/2

)
ω and θ4 =

Zfluxθ
∗
4 + ζ

(
a† + a

)
/
√

2, where the oscillator frequency
is ω =

√
8EJEC and the magnitude of quantum fluctua-

tions is ζ =
(

8EC
EJ

)1/4

β−1/2. Fig. 2(d) shows the proba-

bility distribution functions p0/1 (θ4) ≈ 1
ζ
√
π
e−(θ4∓θ∗4 )2/ζ2

associated with |0〉f and |1〉f . The magnitude of the
quantum fluctuations ζ is comparable to the phase sep-
aration ∆ε; indeed ζ ∝ β−1/2 may even dominate the
phase separation ∆ε ∝ β−1 for large β (Fig. 3). [26]
Therefore, we should consider both the phase separation
and the quantum fluctuations.

Hybrid System The Hamiltonian for the hybrid sys-
tem of topological and flux qubits (Fig. 1(c)) is:

H = HHO +HMF
12 =

(
a†a+ 1/2

)
ω − 1

2
E (ε) Ztopo (6)

where ε = φc+θ4 = φc+Zfluxθ
∗
4+ζ

(
a† + a

)
/
√

2. In both
flux qubit basis states, the oscillator is in its ground state
with

〈
a†a
〉

= 0. To first order in the small parameter

δ ≡ ζ
ω
dE(φ)
dφ

∣∣∣
φ=φc

� 1, the Hamiltonian becomes

H = HHO−1
2

(〈E0〉 |0〉 〈0|+ 〈E1〉 |1〉 〈1|)flux⊗Ztopo+O
(
δ2
)

where
〈
E0/1

〉
≡
∫
dθ4E (φc + θ4) p0/1 (θ4).

Up to a single-qubit rotation, the effective Hamiltonian
coupling the flux and topological qubits is

HI =
g

4
ZfluxZtopo (7)

with coupling strength g = 〈E1〉 − 〈E0〉 ≈(
E
(
ε1
)
− E

(
ε0
))

+ 1
4

(
E′′
(
ε1
)
− E′′

(
ε0
))
ζ2 +

O
(
ζ3
)
.The first term arises from the phase separation

and the second term from the quantum fluctuations;
corrections higher order in ζ � 1 are small.

Because the energy splitting function E (ε) is highly
non-linear, we may tune φc to φoff such that vF /L∆0 �
ε0,1 = φoff ± ∆ε/2 < π/2 and switch off the coupling
g ≈ ∆0∆εe−|φoff |∆0L/2vF ∼ 0. On the other hand, we
may adiabatically ramp φc to φon . vF /L∆0, which ef-
fectively switches on the coupling g ≈ ∆0∆ε. By adi-
abatically changing φc from φoff → φon → φoff with∫
g (t) dt = π, we can implement the controlled-phase

(CPt,f ) gate between the topological (t) and flux (f)
qubits. With Hadamard gates Hadf , we can achieve
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FIG. 3: (color online). Comparison between the phase sep-
aration ∆ε ∝ β−1 (dark solid line) and the magnitude of

quantum fluctuations ζ ∝ β−1/2 (purple dashed line), assum-
ing EJ/EC = 80.

CNOTt,f = Hadf ·CPt,f ·Hadf , which flips the flux qubit
conditioned on |1〉t and can be used for quantum non-
demolition measurement of the topological qubit [11, 20].
Furthermore, with Hadamard gates Hadt (implemented
by exchanging two MFs [3, 5]), we can achieve the
swap operation SWAPt,f = (Hadt ·Hadf · CPt,f )3. Fi-
nally, with CPt,f , Hadt and single-qubit rotations Uf ,
we can achieve arbitrary unitary transformations for the
two-qubit hybrid system of flux and topological qubits
[13, 14].

Imperfections There are four relevant imperfections
for the coupled system of flux and topological qubits [27].
The first imperfection is related to the tunneling between
|0〉flux and |1〉flux of the flux qubit, with tunneling rate

t ∼ ω exp
(
−
√
EJ/EC

)
. The coupling between flux and

topological qubits should be strong enough, g � t, to
suppress the undesired tunneling probability ηtunnel ≈
(t/g)2.

The next imperfection comes from undesired excita-
tions of the oscillators. According to the Hamiltonian
H for the hybrid system, the oscillators may be ex-
cited via interaction E (φc + θ4) = E (φc + Zfluxθ

∗
4) +

dE
dε ζ

â†1+â1√
2

+ · · · . The excitation probability can be es-

timated as ηexcite ≈
(
ζ

2ω
dE
dε

)2

. Since
∣∣dE
dε

∣∣ . ∆0,

ζ ≈
(

8EC
EJ

)1/4

β−1/2, and ω =
√

8EJEC , we estimate

ηexcite . 1
20β

(
∆0
EJ

)2√
EJ
EC

.
The third imperfection is due to the finite length of the

STIS wire, which limits the fidelity for the topological
qubit itself. When we switch off the coupling between
the flux and topological qubits by having φc = φoff and
Λφoff � 1 for the STIS wire, there is an exponentially
small energy splitting E ∼ ∆0e

−Λφoff .
The last relevant imperfection is associated with the

excitation modes of the quantum wire, with excitation
energy E′ ≈ vF /L [5]. Occupation of these modes can
potentially modify the phase separation of the flux qubit.
Therefore, we need sufficiently low temperature to expo-
nentially suppress the occupation of these modes by the
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factor e−E
′/kBT .

Physical Parameters We may choose the following de-
sign parameters for the flux qubit: α = 0.8, β = 10,
EJ/EC = 80, and EJ = 200 (2π) GHz. Both phase sep-
aration and quantum fluctuations depend sensitively on
β (see Fig. 3), with ∆ε ≈ 0.16 and ζ ≈ 0.18. Mean-
while, the flux qubit has plasma oscillation frequency ω ≈
60 (2π) GHz, energy barrier ∆U ≈ 0.26EJ , tunneling
rate t ≈ 1.8

√
EJEC exp

[
−0.7 (EJ/EC)1/2

]
≈ 70 (2π)

MHz; these parameters only marginally depend on β [18].
For mesoscopic aluminum junctions with critical cur-

rent density 500 A/cm2, the largest junction (EJ,4 =
βEJ) has an area of about 1 µm2 [15]. For the topo-
logical qubit, it is feasible to achieve the parameters
∆0 ∼ 0.1meV≈ 25 (2π)GHz, vF ∼ 105m/s, L ∼ 5µm,
and T = 20mK. For the interface, the effective cou-
pling is g ∼ ∆0∆ε ∼ 2 (2π)GHz. Therefore, we
have imperfections ηtunnel ∼ 10−3, ηexcite . 10−3,
e−Λφoff ≈ e−20|sinφoff/2| < 10−3 (assuming φoff ≈ π/4),
and e−E

′/kBT < 10−3 [28].
Phase Qubit A similar interface can be constructed

to couple the SC phase qubit [7, 21] and the topolog-
ical qubit. A phase qubit is just a JJ with a fixed
DC-current source I. The phase qubit Hamiltonian is
Hphase = T + Uphase, where T = 1

2ECV
2 and Uphase =

−IΦ0φ−I0Φ0 cosφ. The qubit can be encoded in the two
lowest energy states, |0〉phase and |1〉phase, with magni-
tude of quantum fluctuations ζ0 and ζ1, respectively. The
coupling strength between phase and topological qubits
can be estimated as gphase ≈ E′′ (ε)

(
ζ2
1 − ζ2

0

)
.

Notes added It was recently proposed to use
the Aharonov-Casher (AC) effect for quantum non-

demolition measurement of a topological qubit [11, 12].
This proposal, which applies in the parameter regime
α > 1 where the flux qubit has two possible tunneling
pathways, exploits the observation that whether two tun-
neling paths interfere destructively or constructively can
be controlled by the state of the topological qubit. In
contrast, our proposal, which applies in the parameter
regime α < 1 where the flux qubit has only one tun-
neling pathway, exploits the non-linearity of the energy
splitting E (ε) to achieve a controlled-phase coupling be-
tween the topological and flux qubits. After this Letter
was finished, the related work [22] appeared.

Conclusion We have proposed and analyzed a feasible
interface between flux and topological qubits. Our pro-
posal uses a flux qubit design with four JJs, such that the
two basis states of the qubit have a small phase separa-
tion ∆ε on a particular superconducting island, enabling
us to adiabatically switch on and off the coupling be-
tween the flux and topological qubits. Such interfaces
may enable us to store and retrieve quantum informa-
tion using the topological qubit, to repetitively readout
the topological qubit with a conventional qubit, or to
switch between conventional and topological systems for
various quantum information processing tasks.
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