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We present a model of dissipative transport in the fractional quantum Hall regime. Our model
takes account of tunneling through saddle points in the effective potential for excitations created by
impurities. We predict the temperature range over which activated behavior is observed and explain
why this range nearly always corresponds to around a factor two in temperature in both integer
quantum Hall and fractional quantum Hall systems. We identify the ratio of the gap observed in
the activated behaviour and the temperature of the inflection point in the Arrhenius plot as an
important diagnostic for determining the importance of tunneling in real samples.

PACS numbers: 73.20.Mf, 73.21.-b, 73.40.Hm, 73.43.Cd, 73.43.Lp

The energy gap and an incompressible ground state are
essential components of all quantum Hall systems [1, 2].
Estimates of this gap have usually been found by fit-
ting the temperature-dependence of the longitudinal re-
sistance of the highest mobility samples to the standard
Arrhenius form [3–5]. However, progress towards an un-
derstanding of how the measured activation gap relates
to the intrinsic gap has been held up by the lack of a de-
tailed microscopic model of the effect of disorder on the
dissipative transport.

The Arrhenius form, σ = σ0e
−∆/2T , is found only over

a small range in temperature and the estimates of the
gap are lower than theoretical expectations [3, 4, 6, 7].
Where it has been possible to extract estimates, σ0 has
generally been lower by around a factor of two than the
predicted 2(qe)2/h per square [8], where qe is the charge
carried by the quasiparticles/quasiholes (qp/qh) [9, 10].

The gap ∆ extracted from experiments has often been
interpreted as a zero-temperature mobility gap. Specif-
ically, this equates ∆ to the energy necessary to cre-
ate a pair of separated oppositely charged quasiparticles
in presumably well-defined extended single-quasiparticle
states, which can then carry charge across the system
[5, 11–13]. Here, however, we advance a different pic-
ture of thermally activated transport in a quantized Hall
state in a modulation doped sample. Our approach gen-
eralizes the model of [8] to include the effect of thermally
assisted tunneling and to account for the compressible
screening regions [14, 15] which are nucleated when the
gap is smaller than the unscreened potential due to ion-
ized donors. The conductance measurements are con-
trolled by the saddle point gap energy, ∆s, which is the
energy required to excite excitations at a saddle point in
this potential. The presence of screening regions means
that ∆s will normally be significantly less than the gap in
ideal homogeneous incompressible systems, ∆h, studied
using exact diagonalizations, by an amount which is not
the result of a simple broadening of levels, Γ [4, 11], and
with no simple connection to the zero field mobility [7].

Our model explains why activated behavior is normally

only seen over a small regime in temperature with a factor
of around two between the highest and lowest tempera-
tures and predicts that the prefactor, σ0, of the Arrhe-
nius form is reduced from its ‘ideal’ value of 2(qe)2/h.
We show that the gap, ∆i, obtained from the Arrhenius
plots, and the temperature range (in units of ∆i), over
which activated behavior is observed, can be used to esti-
mate ∆s. We find ∆s/∆h ≈ 0.55 for the strongest lowest
Landau level (LL) states of [4] and ∆s/∆h ≈ 0.4, for the
strongest state at ν = 5/2 of [5].

The samples studied experimentally typically have the
donor ions in layer(s) set back from the 2DEG. The set-
back distance, d, sets the length scale for the potential
fluctuations in the electron gas created by the ionized
donors. In most samples and at the filling fractions and
densities involved, d >∼ `q = `0/

√
q. Here `q is the effec-

tive magnetic length of the qp/qh, and `0 =
√
h̄/eB.

Modelling of the positioning of the ions in the donor
layers suggests that ∆h is smaller than the unscreened
impurity potential, and predicts that the system breaks
up into regions of incompressible fluid separating com-
pressible regions containing excitations, which partially
screen the impurity potential [15, 16]. The quantized
Hall conductance of the system is then the response of
the percolating regions of incompressible fluid.

When `q � d, and in the absence of screening regions,
the dissipative response near the center of the quantum
Hall plateau is due to the transfer of thermal excitations
across saddle points in the energy landscape set up by the
ionized donors [8]. Each saddle point acts as a resistor in
two separate resistor networks. In one, a saddle connects
together the p-type regions (qh-rich) and in the other it
connects the n-type (qp-rich) regions. The conductance
in each case is given by (qe)2h−1 exp (−Eh,ps /kT ), where
Ehs and Eps are the heights of the saddle point for qh’s
and qp’s with Ehs + Eps = ∆s. If the fluctuations of the
impurity potential are symmetrically distributed about
the mean, Dykhne’s theorem [17] gives that the logarithm
of the conductance of each network is the average of the
logarithm of the conductance at each node and gives an
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Figure 1. Band alignment and particle flow across a typical
saddle point. Upper left: Break-up of a quantum Hall system.
Incompressible fluid at filling fraction ν (white background)
separates compressible regions in which qp’s (dark diagonals
on lighter shading) and qh’s (light diagonals on darker shad-
ing) are nucleated [16]. Upper Right: Tunnelling of a qp
through the saddle point from an equipotential line about
the left region (chemical potential µl) to one about the right.
Main figure: Energy band alignment. For qp excitations with
energies E < Ep

s , the transmission probability is significant
if the point of closest approach to the saddle point, x0, lies
within a zone of width ∼ 2`q about the saddle point. Poten-
tial variations in the incompressible region exceeding ∆s are
not possible. They would simply nucleate carriers and reduce
the size of the incompressible region.

overall response of 2(qe)2h−1 exp (−∆s/2kT ).
If `q becomes comparable to d or ax, where 2ax is the

width of the incompressible region at a saddle (see Fig 1),
the main dissipative process still involves carriers crossing
saddle points, but now there may be significant tunneling
across the saddle point. There is then a range of temper-
atures in which the response appears activated, with an
activation energy reduced from Es by an amount which
depends on ax/`q but not on temperature.

Excitations follow the classical trajectories except in
the neighborhood of a saddle point. Assuming fast equi-
libration in the localised regions [8, 18], the conductance
of the saddle point for the transport of qp’s (taken here
to be moving in the x-direction) is given by

σ =
(qe)2

h

1
kT

∫ ∆s

0

dE T (E − Es)e−E/kT , (1)

where Es is the height of the saddle point, T (E −Es) is
the probability that a qp with energy E is transmitted
across the saddle point and ∆s is the energy required to
excite a qp/qh at a saddle point. When lq � ax, we have
T = 0 or 1, according to whether E is smaller or larger
than Es, and we recover the result of [8].

The tunneling probability, T , can be computed exactly
in the special case of non-interacting particles when the
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Figure 2. a) Loge σ vs 1/T for different values of a/`q (a is the
typical saddle point width). The estimated activation gap ∆i

(in units of the saddle point gap ∆s) is twice the maximum
value of the slope (dashed line) drawn at the inflection points
at temperatures Ti (crosses). ∆i/∆s = .4, .63 and .86 for
the illustrative values of a/`q. loge σ appears linear in 1/T
between Tu (disks) and Td (hourglasses). At Tu and Td, the
slope is 95% of its value at Ti. The ratio Tu/Td is shown in b)
as a function of ∆i/∆s. c) The prefactor of the activated be-
havior, estimated from the extrapolation of the linear region
to 1/T = 0, as a function of ∆i.

potential energy near the saddle isW = Es−Uxx2+Uyy2

[19]. Provided that Ux,y/mω
2
c ≈ (`q/ax,y)2/2 < 1,

T (E−Es) = 1/(1+e−π(E−Es)/(`2q
√
UxUy)), and the expo-

nent in the denominator is given correctly by the WKB
approximation. Here ωc is the cyclotron frequency. As-
suming that this form for T is valid for arbitrary saddle
point potentials, we have computed the exponential fac-
tor within the WKB approximation and hence the aver-
age of loge σ for different (symmetric) distributions of
saddle-point heights and for different potentials. The
results are not sensitive to the exact form assumed for
the potential or the distribution of saddle point heights
and widths, provided these are symmetrically distributed
about their mean values. The principal role of interac-
tions is to set the energy scale, ∆s. We ignore additional
interaction effects arising from the non-Fermionic nature
of the excitations which are thought to be small [20].

Figure 2a shows loge σ as a function of 1/T for dif-
ferent values of the average width, a. The saddle
points are described by W = Es − Uxx

2 + Uyy
2, with√

UxUy = ∆s/2a2, and Es distributed evenly between 0
and ∆s. Approximately linear dependence of the form
loge σ ∼ −∆i/2T is observed between Td and Tu, which
we take to be the temperatures at which the gradient is
within 5% of its maximum value. ∆i is defined as twice
the slope of the tangent drawn at the inflection point at
temperature Ti. For T < Td, the response is dominated
by activation energies lower than ∆i but which depend
on temperature. For T > Tu, σ transport is thermally
activated but less than an Arrhenius law predicts, be-
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cause of the upper limit in (1). (Excitations with energy
above ∆s are minority carriers localized in the adjacent
puddle and do not contribute to transport). An estimate
of the ratio Tu/Td is shown in Fig 2b as a function of
∆i/∆s. Except when ∆i

>∼ 0.85∆s, the ratio is around
two or less. This is in line with experimental observa-
tions [3, 4, 6, 7], which also find log σ ∼ −∆i/2T over a
temperature range with Tu/Td <∼ 2.

Figure 2c shows the prefactor of the apparent activated
behavior as a function of ∆i/∆s. For ∆i

<∼ 0.85∆s, the
prefactor is between 0.8 and 1.25 in units of (qe)2/h and
only approaches the value two, predicted in [8], when
the effects of tunneling are small (∆i/∆s

>∼ 0.95). The
rapid drop of σ0, as ∆i/∆s is reduced from one, explains
why σ0 has been reported to lie between 0.8 and 1.1 [9]
with only a few datapoints (mostly at ν = 4/3 close to a
spin transition) falling below this region [10]. However,
the use of the prefactor obtained from observation is not
easy, as it involves exponentiation of a value obtained by
extrapolating to the limit 1/T → 0, and may not be a
reliable measure of the tunneling effect.

The extent of thermally assisted tunneling in actual
samples can be estimated from ∆i/Ti. While the effect is
controlled in our model by the ratio a/`q, the ratio ∆i/Ti
is directly accessible experimentally. We have also esti-
mated ∆i/Ti for sample A of [4] (which has d = 80nm)
both by looking for the inflection point and from the
values for Tu and Td (our model gives 1/Ti at around
.6/Tu + .4/Td). From the dependence of ∆i/∆s as a
function of ∆i/Ti, which is shown in Fig 3, we obtain the
estimates of ∆s given in the inset table. We also include
estimates for the average saddle point width, a, and the
gap for ideal homogeneous systems, ∆h [6, 21].

Two striking features of the estimates in Fig 3 are that
the typical saddle point widths a do not vary much be-
tween filling fractions 1/3 and 4/9 for the given sample
and that the saddle point gaps, ∆s, are consistently a fac-
tor around two less than the values predicted for homoge-
neous systems, ∆h. Given that the width of the incom-
pressible strips, b, is not expected to vary significantly
for filling fractions in the hierarchy, we should also ex-
pect a to be approximately constant. b is determined by
the electrostatic potential difference, δφ, between the two
sides of the incompressible region, set up by the charge
redistribution needed to pin the charge density to its in-
compressible value. If the electrostatic energy gain from
transferring a qp across the region exceeds the gap en-
ergy, qp’s and qh’s will be nucleated on both sides. The
width of the strip is fixed by the condition eδφ = ∆s/q.
∆s/q is the discontinuity in chemical potential for elec-
trons, which is expected to be nearly constant (in units of
e2/ε`0) for hierarchy states [22]. This leaves only a weak
dependence of δφ, and therefore b, on

√
B for states at ν

as ν → 1/2, consistent with what we find. In Figs 2 and
3, we only show results for ∆i/∆s

>∼ 0.2 corresponding
to (a/`q) >∼ 0.7. For small a, the neglect of LL-mixing in
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Figure 3. The ratio of the apparent gap to the saddle point
gap, ∆i/∆s, as a function of ∆i/Ti. Points are placed on
the curve at the values of ∆i/Ti for sample A of [4]. This
allows us to estimate ∆i/∆s at the corresponding values of ν.
Results in the table are for ∆s (in Kelvin) together with the
gap predicted for homogenous systems, ∆h, and the saddle
point width at the average saddle point, a (in nm).

the WKB calculation is no longer justifiable, and there
may also be direct tunnelling between qh-rich and qp-rich
regions. Enhanced tunnelling would appear as a reduced
value for a and may explain its low value at ν = 5/11.

The microscopic gaps, ∆s, computed using our model
from the data of [4] are around 55% of the values, ∆h,
predicted using exact diagonalizations of systems of finite
numbers of particles at ν = 1/3, 2/5 and 3/7 and 40% at
4/9. Although the calculations take account of the non-
zero width of the quantum wells and (perturbatively) of
LL mixing, they are all for homogeneous systems. Resid-
ual short-range scatterers, omitted from our model, may
lead to a reduction of the mobility gap [12, 13]. Further-
more, the presence of metallic screening regions makes
it unlikely that ∆h would be the correct value for ∆s.
Firstly, ∆h is the energy to create a qp/qh pair at infi-
nite separation, while the excitations can be at most O(a)
apart across a saddle. Secondly, the interaction between
particles, responsible for the gap in the incompressible re-
gions in fractional quantum Hall systems, will be reduced
by the screening of the nearby metallic regions. Although
this screening will affect the form of the interaction, its
principal effect in the lowest LL will be to reduce the
overall strength of the interaction. A reduction of the
gap by a factor which is roughly constant is reasonable.

We have analysed the even-denominator states in the
second LL using data taken at zero tilt angle on the
sample discussed in Chapter 5 of [5]. This has n =
1.6×1011cm−2 and d = 160nm. We have extracted ∆i/Ti
from the Arrhenius plots and estimated the saddle point
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gaps, ∆s and (using lq = 2l0, q = 1/4) widths, a:

ν ∆i/Ti ∆i[K] ∆s[K] ∆h[K] a/lq
5/2 5.4 .32 .40 1.0 1.7
7/2 1.0 .035 .14 .85 .84

The ∆h have been computed for the spin-polarized
ground states in a quantum well with the same density
and well-width (40nm) using exact diagonalization for
small systems and accounting for LL-mixing using the
RPA method of [6]. For ν = 5/2, ∆s/∆h ≈ 0.4, which
is the same as that found for the state at ν = 4/9 for
the sample of [4] (see Fig. 3). For ν = 7/2, the strong
tunneling across the saddle point, a/lq <∼ 1, may explain
the small ∆s/∆h. We note that, according to our model,
the quality of this sample is in part due to its large set-
back distance d = 160nm. A large value of d will reduce
the gradients of the impurity potential and hence lead
to increased values for a. According to our model, even
a small reduction in a would mean the loss of activated
behavior at ν = 7/2 in this sample.

Data for the integer quantum Hall effect (IQH) can
also be accounted for on the basis of thermally assisted
tunnelling. However, the IQH is more complicated, be-
cause the charging energy of a localized region ∼ (qe)2/εd
which in the FQH case is much smaller than ∆s and
which we have neglected, is larger and is likely to be
important. Nevertheless, our analysis of the data of [9]
shows that for the sample G160 ∆i/Ti varies between
nine at ν = 2 (∆i/∆s ≈ 0.9) and four (∆i/∆s ≈ 0.65)
at ν = 14. For these filling fractions, Tu/Td reduces from
just over 2 (ν = 2) to around 1.5 (ν = 14) consistent
with the prediction of our model (Fig 2b).

Our adaptation of the model of [8], which takes ac-
count of the nucleation of carriers as a result of long-
range potential fluctuations and of tunneling through
saddle points, accounts for experimental data taken on
fractional quantum Hall samples. The dissipative trans-
port is controlled by the energy to create excitations close
to a saddle point, ∆s. This is smaller than the gap in an
ideal homogeneous system, ∆h, because of residual short-
range scatterers and because of the changed nature of the
interaction in the presence of nearby metallic screening
regions. The gap extracted from Arrhenius plots, ∆i, is
reduced from ∆s by tunneling effects by an amount that
can be estimated via the ratio ∆i/Ti (see Fig. 3). For
a given filling fraction, the largest values of ∆i will be
observed in samples with small gradients of the disorder
potential acting on the 2DEG. This will act to increase
typical saddle point widths, a, and will occur in sam-
ples with large setback distances, d, and with the most

even distribution of the ionised donors (thought to be
enhanced by thermal cycling [5]), both of which lead to
larger values of a.
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