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Topological insulators are new states of quantum matter in which surface states residing in the bulk
insulating gap are protected by time-reversal symmetry. When a proper kind of antiferromagnetic
long range order is established in a topological insulator, the system supports axionic excitations.
In this paper, we study theoretically the electronic states in a transition metal oxide of corundum
structure, in which both spin-orbit interaction and electron-electron interaction play crucial roles.
A tight-binding model analysis predicts that materials with this structure can be strong topological
insulator. Because of the electron correlation, an antiferromagnetic order may develop, giving rise
to a topological magnetic insulator phase with axionic excitations.

PACS numbers: 71.70.Ej, 75.30.Kz, 75.80.+q, 73.20.-r

The discovery of time reversal invariant topological in-
sulator has attracted great attention in condensed mat-
ter physics [1–9]. With time-reversal symmetry broken
on the surface, the electromagnetic response of three di-
mensional (3D) insulators are described by the topolog-
ical θ term of the form Sθ = (θ/2π)(α/2π)

∫

d3xdtE ·B
together with the ordinary Maxwell terms, where E and
B are the conventional electromagnetic field insides the
insulator, α = e2/~c is the fine structure constant, and
θ is the dimensionless pseudoscalar parameter describ-
ing the insulator, which refers to “axion” field in axion
electrodynamics [10]. For a system without boundary,
all the physical quantities are invariant if θ is shifted by
integer multiple of 2π. Therefor all time reversal invari-
ant insulator fall into two distinct classes described by
either θ = 0 (trivial insulator) or θ = π (topological
insulator)[11]. Such a universal value of θ = π in topo-
logical insulators leads to magneto-electric effect with an
universal coefficient, which has several unique experimen-
tal consequences such as a topological contribution to the
Faraday rotation or Kerr rotation[11–13], and the image
monopole induced by an electron[14]. θ has an explicit
microscopic expression of the momentum space Chern-
Simons form which depends on the band structure of the
insulator [11]

θ =
1

4π

∫

d3kǫijkTr

[

Ai∂jAk + i
2

3
AiAjAk

]

, (1)

where Aµν
i (k) = −i〈uµ|∂/∂ki|uν〉 is the momentum space

non-abelian gauge field, with |uµ〉, |uν〉 referring to the
Bloch wavefunction of occupied bands.

If strong electron correlation exists in a topological in-
sulator, a long-range antiferromagnetic(AFM) order can
be established under enough low temperature. Since
the AFM order breaks time-reversal symmetry sponta-
neously, θ can deviate from π, and also becomes a dy-

namical field which has fluctuations associated with some
spin collective modes. The spin collective mode induc-
ing fluctuations of θ are thus coupled to the photons by

θE · B term, which means they become “axions” in the
term used in high energy physics. Such a nonconventional
antiferromagnetic insulator supporting axion excitations
is proposed as topological magnetic insulator (TMI) [15].
Due to its coupling to photons, the axion field hybridizes
with photons, leading to axion polariton, with a polariton
gap tunable by an external magnetic field. Thus such a
material can be used as a novel type of optical modulator
to control the transmission of light through the material.

To realize the TMI phase, we need both the non-
trivial topology of the electron bands and strong elec-
tron correlation. The materials with electrons in 3d, 4d
or 5d-orbital can have both strong spin-orbit coupling
(SOC) and strong interaction, which is ideal for this pur-
pose. Recently, models for topological insulators with
strong electron correlation have been proposed[16–19],
also topological phases may exist in thallium-based III-
V-VI2 ternary chalcogenides[20] as well as ternary heusler
compounds[21, 22]. In this Letter, we study theoretically
the transition metal oxide ABO3 of corundum structure
with A and B standing for some transition metals such
as Fe, Ru, Rh, Ir, Os, etc [23]. A possible candidate
material is α-Fe2O3. A tight binding model is obtained
by using point group symmetry of this structure, from
which we find a TMI phase with certain SOC strength
and electron-electron interaction.

The corundum structure is shown in Fig. 1(a). Each
transition metal atom is surrounded by oxygen octahe-
dron, and the d orbitals are split by the octahedral crys-
talline field into doublet eg(x

2 − y2, 3z2 − r2) and triplet
t2g(xy, yz, zx) orbitals (See Fig. 1(c)). We will neglect
small distortion of the oxygen octahedra which may lead
to minor corrections to electronic structure [24]. The en-
ergy of t2g stays lower with respect to eg, because the lat-
ter point towards the negatively charged oxygens. The
SOC is effective in t2g orbitals and negligible in eg or-
bitals. Including the SOC, t2g splits into total angular
momentum jeff = 3/2 and jeff = 1/2. We focus on those
materials where the Fermi level lies completely in the
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FIG. 1: (color online) (a) Corundum crystal structure with
three primitive lattice vector denoted as ~t1,2,3. Each tran-
sition metal ion M (M=Ir, Os, etc.) (green large circles) is
surrounded by oxygen octahedron (red small circles). Each
unit cell has four M atoms, denoted as 1, 2, 3, 4. The space
group is R3̄c. (b) Brillouin zone for corundum structure
with space group R3̄c. The four inequivalent time-reversal
invariant points are Γ(000), F (π00), L(πππ) and Z(00π). (c)
Schematic crystal field splitting of 5d level in corundum struc-
ture. We are interested in the half filling case with effective
angular momentum jeff = 1/2.

jeff = 1/2 sub-bands. For example, the ions Fe3+, Ir4+

etc with five d-electrons satisfy this requirement[23].
To obtain the electron dynamics in this system, we

start by a symmetry analysis to the corundum structure.
The space group of this structure is D5

3d(R3̄c). It has a
trigonal axis (three-fold rotation symmetry C3) defined
by z axis, a binary axis (two-fold rotation symmetry C2),
defined by y axis, and inversion symmetry with the in-
version center at the middle of the two neighbor transi-
tion metal atoms. The primitive lattice vectors ~t1,2,3 and
primitive unit cells are shown in Fig. 1(a), where each
unit cell consists of four transition metal atoms denoted
as 1,2,3,4. Since the oxygen p-level ǫp are far away from
the Fermi level, we can consider a model describing only
d-electrons, with the hopping mediated by the oxygen
p-orbitals. The model is generally written as

H0 = −
∑

〈ij〉

[

d†i tijdj + h.c.
]

+
∑

〈〈ij〉〉

[

d†i t̂
′
ijdj + h.c.

]

, (2)

where 〈ij〉 and 〈〈ij〉〉 denote the nearest-neighbor (NN)
and next-nearest-neighbor (NNN) sites, respectively, and
the hopping terms tij and t̂′ij are in general 2 × 2 ma-

trices. The form of the parameters tij , t̂
′
ij can be sim-

plified by symmetry considerations. Due to space lim-
itation, we will only present the result of the symme-
try analysis. The NN transfer integral tij are real and
spin independent, with two independent parameters, the
intra-plane hopping t and the inter-plane hopping t⊥.
t = (pdπ)2[(ppσ) +3(ppπ)]/3(ǫd − ǫp)

2 [17], where (pdπ),
(ppσ), and (ppπ) are Slater-Koster parameters between

pd and pp, respectively [25]. The contribution of the
order of (pdπ)2/(ǫd − ǫp) cancel out in the honeycomb
lattice, in sharp contrast to Sr2IrO4 with the perovskite
lattice [26, 27]. The NNN transfer integrals are spin de-
pendent, and it is essential for the realization of the topo-
logical insulator phase. For intra-plane in layer A, 1 → 1
hopping can be written as

t̂′11 = it′1‖~σ · ~r11 + t1‖, (3)

~r11 is a unit vector ~r11 ∝ ~t11 + 1/
√

2ẑ, ~t11 is the hopping

link. t̂′22 = t̂′†11 due to inversion symmetry. While in B
plane, t̂′33 = e−iπ/2σz t̂′11e

iπ/2σz , t̂′44 = e−iπ/2σz t̂′22e
iπ/2σz

due to C2 symmetry. For inter-plane (A → B),

t̂′13 = it′2⊥~σ · ~r13 + t2⊥ (4)

~r13 is a unit vector ~r13 ∝ ~t13 − αẑ, ~t13 is the hopping
link, α is some parameter which depend on materials
and cannot be determined purely by symmetry, below we
choose α = 1/

√
2 which has almost the same amplitude

as intra-plane. t̂′24 = t̂′13, t̂′14 = t̂′23 = e−iπ/6σz t̂′13e
iπ/6σz .

Explicitly, ~rij for the intra-plane 1 → 1, 2 → 2 hopping
are x1, y1, z1, and 3 → 3, 4 → 4 are x2, y2, z2 denoting in
Fig. 1(a).

In summary, the transfer integrals are real and spin
independent for NN links, while complex and spin de-
pendent for NNN links. The accurate hopping parame-
ters varies in different materials. As an example, in the
following we will use the transfer integrals of Ir oxide
introduced in Ref. [17]. One can always define all the
parameters in the unit of in-plane NN hopping t, which
leads to t = 1, t′1‖ = 0.33, t1‖ = −0.1, t⊥ = y, t2⊥ = 0.5y,

t′2⊥ = λt2⊥ = 0.4y. Here λ is the SOC strength which
determines the ratio of spin-dependent hopping and spin-
independent hopping. For Ir oxide we have λ = 0.8. All
the inter-plane hopping matrix elements are rescaled by a
factor y which incorporates the anisotropy between intra-
plane and inter-plane directions. The energy dispersion
for y = 0.3 (dashed line) and y = 0.55 (solid line) are
shown in Fig. 2(a), which shows that the system at half
filling is an insulator in both case. Due to inversion sym-
metry, all the energy bands are doubly degenerate.

In three-dimensional topological band insulators, four
independent Z2 topological invariants can be defined [28–
30]. For inversion symmetric systems, all the topological
invariants can be simply determined by the parity of the
wave-functions at the 8 time-reversal invariant momenta
(TRIM) in the Brillouin zone [3]. G1, G2, G3 are the
three basis vectors of the reciprocal lattice, then the 8
TRIM’s are defined by ki = (k1G1 + k2G2 + k3G3)/2π
with k1, k2, k3 = 0 or π. For each TRIM ki, one can de-
fine a Z2 quantity δi as the multiplication of the parity
of all occupied bands δi =

∏

s∈occ ξs, with ξs the par-
ity of s-th band. It should be noticed that a Kramers
pair of bands are only counted once, otherwise δi would
always be even. The four Z2 invariants (ν0; ν1ν2ν3) can
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FIG. 2: (color online) (a) 3D energy band dispersion of tight-
binding model for corundum structure with λ = 0.8, and
y = 0.3(dashed line), y = 0.55(solid line). (b) The change
of energy levels at F point (π00) versus y. A band crossing
occurs at y = 0.4245. The system changes from trivial insula-
tor to topological insulator. (c) & (d) 2D band structure for
a slab with 001 surface for the parameters λ = 0.8, y = 0.3
in (c) and y = 0.55 in (d). The red curves in (d) stands for
surface states. The inset shows the surface Brillouin zone.

be determined by δi in which ν0 =
∏8

i=1 δi is the strong
topological invariant which is stable upon disorder, and
responsible for the topological magneto-electric effect[11].
More discussions on the other three “weak topological in-
variants” can be found in Ref.[3]. For y = 0.3, we find
δ = +1 at all TRIM at half filling. On the contrary, for
y = 0.55 we find δ = −1 at the three F points (see Fig. 1
(b)) and δ = +1 at all other TRIM’s. Consequently,
y = 0.55 phase is a strong topological insulator(STI)
with the topological character (1; 000), and y = 0.3 is
a trivial insulator with character (0; 000). From this re-
sult we see that a band inversion[1] occurs at F points
upon the change of y. In Fig. 2 (b) we show the en-
ergy at F point versus y, from which one can see clearly
a level crossing at y ≃ 0.42. The topological invariants
can be calculated for all values of anisotropy parameter
y and SOC parameter λ, which leads to the phase dia-
gram shown in Fig. 3. One can see that the topological
nontrivial band structure can be realized at large y (i.e.,
small anisotropy) even for infinitesimal SOC. However,
one should notice that for some parameters the band
structure is actually a semi-metal (similar to Sb), which
has a direct gap but does not have in-direct gap. We
also solve the Hamiltonian (2) in a slab geometry with
two 001 surfaces to study explicitly the topological sur-
face states. Fig. 2(c)&(d) shows the 2D energy dispersion
of the two systems shown in Fig. 2(a). In addition to the
bulk states, for y = 0.55 there are surface states with
three Dirac cones at M points of the surface BZ, while
no surface state is found for y = 0.3, in consistency with
the bulk topological invariants.
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FIG. 3: (color online) The phase diagram of the system with
two variables: the out of plane hopping parameter y and SOC
parameter λ. The green and gray regions stand for topolog-
ical nontrivial and trivial phases, respectively. Point A and
B correspond to the parameters used in Fig. 2(c) and (d),
respectively.

To get a better understanding of the physical proper-
ties of this system, a low energy effective model can be
obtained by expanding the Hamiltonian around the F
points. Around each F point, the effective model is 4×4
which describes two Kramers pairs of low lying bands and
has Dirac-like form. In the following, we will denote the
momentum by its coordinate in the basis of reciprocal lat-
tice, i.e., k = (k1G1 + k2G2 + k3G3) /2π. The F points
are given by (π, 0, 0), (0, π, 0) and (π, π, 0). Around the
point (π, 0, 0) the Hamiltonian has the following form:

Heff(π00) = ǫ0(q)I4×4 +
∑5

a=1
da(q)Γa, (5)

Here the Dirac Γ-matrices are defined as Γa = (τx ⊗
σx, τx ⊗ σy , τy ⊗ 1, τz ⊗ 1, τx ⊗ σz) where τi and σi

(i = x, y, z) denote the Pauli matrices in the space
of orbital and spin, respectively. q = k − (π00),
da(q) =

∑

i=1,2,3 Aa
i qi for a = 1, 2, 3, 5, d4(q) = M +

∑

i=1,2,3 Biq
2
i , and ǫ0(q) = C +

∑

i=1,2,3 Diq
2
i . For

λ = 0.8, around the topological phase transition point
we have

Aa
i =





0.14 −0.12 0.37 −0.34
−0.47 0.06 −0.13 0.09
0.014 0.038 0.015 0.055



 ,

Bi = (0.625, 0.32, 0.24) ,

Di = (0.375, 0.04, 0.04)

C = 0.064. The mass parameter M depends on y as
M ≈ −23y + 9.76 which changes sign at y ≃ 0.42 and
leads to the topological phase transition. The effective
Hamiltonian around the other two F points at (0π0) and
(ππ0) can be obtained by C3 rotation.

Now we study the effect of electron correlation. The
leading term in the interaction Hamiltonian is the on-
site Hubbard repulsion for the jeff = 1/2 orbitals Hint =
U

∑

i ni↑ni↓. Magnetic ordering can be studied in mean
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FIG. 4: (color online) (a) The phase diagram with y and
U as parameters. (b) The value of θ along the blue line in
the phase diagram. θ deviate from the TRI values 0 and
π in the SDW phase for it breaks time-reversal symmetry
T spontaneously. (c) The SDW order pattern. The purple
arrows denote the spin in A layer and the green arrows denote
the spin in the adjacent B layer. Other possible spin orderings
can be obtained by six-fold rotations of this one.

field approximation. For simplicity, we only consider
the order parameters that do not break translational
symmetry. The mean-field calculation predicts a spin-
density wave (SDW) phase above a critical U , and the
spin moments of this SDW phase lie in the honeycomb
plane, which are ordered antiferromagnetically within
each layer and non-collinear between the two neighbor-
ing layers, as shown in Fig. 4. A finite mass for exciting
the SDW phase is for example mSDW/t = 3.65 when
U/t = 6.0. Experimentally, α-Fe2O3 develops a canted
anti-ferromagnetic phase with spins residing in the hon-
eycomb layer when TM < T < TNéel, where TM is the
Morin transition temperature [31–33]. Spins in each layer
are parallel, and those in two adjacent layers are coupled
anti-ferromagnetically. Moreover, due to a slight spin-
canting, the spins in adjacent layers are not exactly an-
tiparallel (non-collinear). Spins can be ordered along one
of three directions interchanged by C3 and are homoge-
neously distributed in the crystal [31, 32]. The deviation
from the SDW pattern may due to the hopping parame-
ters chosen in the calculation [33]. Although it is different
from the pattern we obtained in Fig. 4, the spin order-
ing in bulk α-Fe2O3 breaks T , giving rise to θ 6= 0, π.
Therefore, α-Fe2O3 is a possible material to realize TMI.

The value of θ in the SDW phase of this effective model
can be calculated as in Ref. [15]

θ =
1

4π

∫

d3k
2|d| + d4

(|d| + d4)2|d|3
ǫijkldi∂xdj∂ydk∂zdl, (6)

where i, j, k, l = 1, 2, 3, 5, and |d| = (
∑5

a=1 d2
a)1/2. Since

the main contribution to θ comes from the region close

to Dirac points, θ can be approximated by the sum of
θs calculated separately for each Dirac point using the
effective model. The numerical results of θ is shown in
Fig. 4 (b).
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