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To determine the nonlinear elastic response of diamond, single crystals were shock compressed 

along the [100], [110], and [111] orientations to 120 GPa peak elastic stresses. Particle velocity 

histories and elastic wave velocities were measured using laser interferometry. The measured 

elastic wave profiles were used, in combination with published acoustic measurements, to 

determine the complete set of third-order elastic constants. These constants represent the first 

experimental determination, and several differ significantly from those calculated using 

theoretical models. 
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 Understanding the properties of carbon allotropes under conditions of high pressure is 

critical for studying the interiors of giant planets [1-3], the development of inertial confinement 

fusion [4], and in understanding carbon nanostructures [5]. Diamond, in particular, has 

widespread scientific and technological importance due to its exceptional mechanical, optical 

and thermal properties [6]. Diamond anvil cells are routinely used to create static pressure 

conditions in excess of 300 GPa [7]. A recent study has suggested that the Raman spectra of 

diamond microcrystals may be used as a pressure standard up to 270 GPa [8]. Shock wave [9-11] 

and ramp wave [12] compression studies have explored the phase diagram of diamond up to 1 

TPa. At these extreme conditions, the anharmonic properties of the diamond lattice play a central 

role in governing the thermo-mechanical and anisotropic response.  

 

 Third-order elastic constants (TOEC) reflect the lowest-order anharmonic response of a 

crystal and, as such, serve as a starting point for modeling the high stress response, developing 

ion-electron pseudopotentials [13] or empirical interatomic potentials [14], studying properties of 

strained quantum wells [15] and physical phenomena related to lattice anharmonicity in general. 

In addition, third- and higher-order elastic constants provide a convenient approach to quantify 

the nonlinear elastic response of a solid [16]. Despite the importance of diamond and its 

widespread use in high pressure science, something as fundamental as the complete set of TOEC 

has not been determined experimentally. In large part, the exceptional mechanical properties of 

diamond, a cubic crystal, have made this determination difficult. Here, we show how this 

difficulty can be overcome and present an experimental determination of the six independent 

TOEC for diamond. 

 



 3 

 The pressure derivatives of the second-order elastic constants of diamond have been 

measured under hydrostatic compression [17], and they provide three linear combinations of the 

TOEC [18]. Typically, stress derivatives of the second-order elastic constants under uniaxial 

stress loading augment the hydrostatic data to obtain the full set of TOEC [19]. However, 

diamond's extreme stiffness and brittle behavior under uniaxial stress loading have precluded 

such measurements. To date, the TOEC of diamond have been estimated from a combination of 

available experimental data and theoretical models [20-22], and ab initio simulations [23]. The 

constants determined from these theoretical methods show large variations, demonstrating the 

need for an experimental determination of these constants. 

 

 Shock wave compression provides a unique approach to obtain the required experimental 

data. We have measured the elastic response of diamond crystals shock compressed along three 

different orientations. Finite strain theory to third-order [24] applied to the measured uniaxial 

strain response provides three additional linear combinations of TOEC. Using the shock data and 

the hydrostatic compression results [17], the complete set of TOEC can be determined entirely 

from experimental measurements as shown here. 

 

 Diamond samples in our experiments were Type IIa single crystal plates 2.5-3 mm in 

diameter and 0.4-0.6 mm thick. The samples were cut, and polished to an optical finish, with the 

normal of the large face oriented along the [100], [110], or [111] direction and were verified to be 

within 3° of the indicated orientation using Laue x-ray diffraction. The experimental 

configuration used in this study is identical to that used in our earlier work and the details can be 

seen there [25]. Impactors were launched using a powder gun or a two stage gun to velocities 
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ranging from 2.1 to 3.7 km/s to achieve the desired peak stresses. A detailed discussion of our 

experimental results, including inelastic deformation data, will be presented elsewhere. Here, we 

focus only on the nonlinear elastic response. 

 

 Particle velocity histories at the diamond-LiF interface and elastic shock wave arrival 

times were recorded using a multi-point velocity interferometer system for any reflector 

(VISAR) [26]. In experiments where a two-wave or an elastic-inelastic response was observed, 

only the initial interface velocity jump corresponding to the elastic wave was considered. The 

elastic shock wave velocities and the in situ particle velocity jumps for elastic compression, 

determined using impedance matching techniques [25,27], are plotted in Figure 1. The 

uncertainty in the elastic shock velocities and the particle velocity jumps is estimated to be ~1% 

[25,28]. Also shown in Figure 1 are data from a recent laser shock study [11], and the calculated 

elastic response using various sets of TOEC obtained from different theoretical calculations [20-

23]. The large scatter and errors bars in the laser shock data preclude their use for determining 

the elastic properties of diamond. Hence, no further discussion of the laser shock data is 

presented in this paper. 

 

 Under uniaxial strain loading, particle velocity and shock velocity measurements provide 

the necessary information to determine the longitudinal stress, longitudinal strain, and density in 

the shocked state using the Rankine-Hugoniot jump conditions [27]. Finite strain theory can then 

be used to determine the value of elastic constants that relate the stress and strain for that 

particular state.  
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 The longitudinal stress, expressed using finite strain theory to third-order, is [29]  

 20
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,        (1) 

where 0ρ  is the initial density, ρ  is the density of the shocked state, 11C′  and 111C′  are the 

second- and third-order isentropic longitudinal elastic constants, and 1η′  is the longitudinal 

Lagrangian strain. A prime indicates that the variable expressed is in the coordinate system 

aligned along the direction of shock wave propagation, namely the [100], [110], or [111] 

direction. Appropriate tensor transformations relate the primed quantities to the crystallographic 

coordinate system. 

 

 For each of the orientations, the primed or effective TOEC are determined from least-

squares fits of Eq. (1) to the experimental data, in conjunction with the published values for the 

second-order constants [17]; the latter are well established. Given the destructive nature of our 

experiments, it was not feasible to conduct a sufficient number of experiments to obtain a 

statistically significant measure of the uncertainty solely from the fitting routine. Therefore, the 

uncertainty in the effective TOEC were conservatively estimated as the quadrature sum of the 

variation of the TOEC due to the experimental uncertainty, and two standard deviations 

determined from the fitting routine. The results of the fitting routine and uncertainty analysis, 

and their relationship to the TOEC in the crystallographic (unprimed) coordinate system are 

 [100]
111 111 7603 600C C′ = = − ±  GPa,        (2) 

 ( )[110]
111 111 112 166

1 3 12 15146 1067
4

C C C C′ = + + = − ±  GPa, and    (3) 

 ( )[111]
111 111 112 123 144 166 456

1 6 2 12 24 16 14631 1183
9

C C C C C C C′ = + + + + + = − ±  GPa.  (4) 
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 The hydrostatic pressure derivatives of the second-order elastic constants of diamond 

[17] provide data to calculate three linear combinations of mixed isothermal-isentropic, third-

order elastic constants [18]. The difference between the isentropic and mixed TOEC [30] was 

found to be very small (< 0.1 GPa), and was neglected in further calculations. Although the 

pressure derivatives [17] show sizable uncertainties (10-20%) and were determined from data 

measured over a limited pressure range (~1.3 kbar) [17], the resulting linear combinations of 

TOEC determined from them are of comparable accuracy to the shock wave results. Together, 

the shock wave and hydrostatic compression measurements provide the six independent, linear 

equations from which all of the TOEC of were determined. 

 

 The complete set of our experimentally determined TOEC are tabulated in Table 1 along 

with previously reported sets of TOEC estimated from a combination of theoretical and 

experimental results [20-23]. The uncertainties in our set were determined using standard 

methods of error analysis [28] from the uncertainties in the measured quantities. Except for 144C  

and 456C , the values reported in Ref. 21 are in reasonable agreement with our values. In general, 

the previously reported values [20-23] show significant variations with each other, and with our 

results. These variations cast doubt on the adequacy of these theoretical models for describing 

the anharmonicity of diamond. Our work demonstrates the need for improvements to current 

theoretical approaches. A recent ab initio approach [31] has provided second- and third-order 

elastic constants for a cubic crystal (silicon) and a trigonal crystal (quartz) which are in 

reasonable agreement with experimentally determined values. Whether this approach [31] will 

result in better agreement with our measurements will be addressed at a future date. 
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 Figure 2 shows the measured longitudinal stress-density compression data and the 

calculated elastic curves obtained using the present set of TOEC and the previously reported sets 

[20-23]. The elastic response calculated using only the second-order elastic constants is also 

shown. The results in Figure 2 lead to the following conclusions. TOEC are required to match the 

measured nonlinear elastic response of diamond crystals, showing that lattice anharmonicity 

contributes significantly at large compressions. The differences between the different curves 

shown in Figure 2 are smallest for the [100] orientation; this is not entirely surprising because 

111C  values (Table I) are generally comparable. For the other two orientations, the differences are 

larger because the other constants, which show larger variations, contribute to the nonlinear 

elastic response. The variations in the calculated longitudinal stress-density curves in Figure 2 

reflect the relative contributions of the TOEC that make up the effective longitudinal moduli 

indicated in Eqs. (2)-(4). Theoretically calculated curves for crystal orientations other than those 

examined in the present work can show large deviations from the measured values if they have 

significant contributions from TOEC which differ measurably from the experimental values. The 

longitudinal stress-density compression relations which fit our experimental results (solid lines in 

Figure 2) are 

 [100] 2 3
1 1079 984 6665σ μ μ μ′ = + −  GPa,      (5) 

 [110] 2 3
1 1180 4356 16776σ μ μ μ′ = + −  GPa, and     (6) 

 [111] 2 3
1 1213 4026 15940σ μ μ μ′ = + −  GPa,      (7) 

where 0/ 1μ ρ ρ= −  is the density compression. 

 

 The complete set of third-order elastic presented here addresses a long standing scientific 
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need to better understand the anharmonic and anisotropic response of diamond crystals. 

Refinements to theoretical models to match our results will provide better insight into the 

bonding and lattice response of carbon under extreme conditions. Anharmonicity plays an 

important role in the onset of solid-solid phase transitions, and our results provide a key starting 

point for understanding the high pressure solid-solid phase transition of diamond [10,12]. 

Knowledge of lattice anharmonicity and anisotropy is essential to characterize of the complex 

stress-strain states in the diamond anvils, increasing the utility of the Raman spectra of diamond 

as a pressure standard [8]. Our results are also expected to be useful for research on carbon in 

planetary astrophysics, fusion energy, and nanotechnology. 
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Table I: Third-order elastic stiffness constants of diamond in GPa. 

 

 Ref. 20a Ref. 21a Ref. 22a Ref. 23b Present 

111C  –6260 –7367 –6475 –6300±300 –7603±600 

112C  –2260 –2136 –1947 –800±100 –1909±554 

123C  112 1040 982 0±400 835±1447 

144C  –674 186 115 0±300 1438±853 

166C  –2860 –3292 –2998 –2600±100 –3938±375 

456C  –823 76 –135 –1300±100 –2316±743 

 

a) These values were obtained from a combination of theoretical models and experimental data. 

b) These values were obtained from ab initio simulations at 0 K. 
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Figure 1. Elastic shock velocity and particle velocity measurements, and calculated values using 

various sets of third-order elastic constants, for shock compression along (a) [100], (b) [110] and 

(c) [111]. 
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Figure 2. Calculated and measured elastic response of diamond shock compressed along (a) 

[100], (b) [110] and (c) [111]. 

 

 


