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We study the timescales for adiabaticity of trapped cold bosons subject to a time-varying lat-
tice potential using a dynamic Gutzwiller mean-field theory. We explain apparently contradictory
experimental observations by demonstrating a clear separation of timescales for local dynamics (∼
ms) and global mass redistribution (∼ 1s). We provide a simple explanation for the short and
fast timescales, finding that while density/energy transport is dominated by low energy phonons,
particle-hole excitations set the adiabaticity time for fast ramps. We show how mass transport
shuts off within Mott domains, leading to a chemical potential gradient that fails to equilibrate on
experimental timescales.

Introduction.— A wide range of experiments have
forced us to confront questions of dynamics in strongly
correlated systems. These include studies of high den-
sity nuclear matter at the Relativistic Heavy Ion Col-
lider (RHIC) [1], transport through metal-insulator inter-
faces [2], and femtosecond spectroscopy [3] of quantum
dots after sudden changes in gate voltages [4]. This is
a conceptually rich area where computation is difficult,
and where it is hard to devise experiments which are
straightforward to analyze. Experiments in cold atoms
are beginning to play an important role in this area –
they have started providing a framework for understand-
ing the non-equilibrium dynamics of strongly correlated
materials [5–10]. In cold gas experiments, not only is
the Hamiltonian known, but one can dynamically tune
between weak and strong interactions, readily produc-
ing highly non-equilibrium situations that allow one to
explore both linear and nonlinear responses, the reestab-
lishment of equilibrium, and the generation of topological
defects during rapid quenches [11]. The latter physics is
relevant to astrophysical models of the early universe.
Here we theoretically explore the timescales governing
local and global transport of bosons in optical lattices,
the prototypical example of strongly correlated cold atom
physics.

Adding further interest to this area, initial experi-
ments [5–7] probing the dynamics of bosons in optical lat-
tices have found adiabaticity/relaxation timescales that
differ by two orders of magnitude. The shortest of these
timescales was particularly noteworthy, as it was an or-
der of magnitude smaller than the inverse of the single
particle tunneling energy, t ∼ 0.1J−1 [6]. How can the
system adjust itself on a timescale which is short com-
pared to the tunneling time? Conversely, experiments on
a nearly identical system at Chicago [5], found that the
global density profile didn’t attain it’s equilibrium value
even on times t ∼ 10J−1! Here we resolve this contra-
diction by demonstrating a separation of timescales for
global transport and local equilibration, and show that
the timescale for adiabiaticity is largely set by the gap to-
wards particle-hole excitations in the strongly correlated
superfluid.

The separation of timescales for local and global equi-
librium emerges in most interacting systems and materi-
als. For example, in the air around us, local equilibrium
is achieved on the collision time (∼ns), but global equilib-
rium is limited by transport coefficients, and is relatively
slow. Typically one expects the slow variables to be those
that are conserved (such as density and energy density),
and those which correspond to broken symmetries (such
as the phase of the superfluid order parameter). Inte-
grating out the fast variables leads to a hydrodynamic
description solely in terms of the slow variables.

A practical consequence of this separation of timescales
is that adiabaticity is much easier to maintain if one
changes parameters in such a way that very little mass
transport is necessary: a principle which is widely used in
cold atom experiments. Optimizing the ramping protocol
is particularly important if insulating regions develop in
the cloud: the transport through these regions is highly
attenuated.

Theoretical Setup.—Bosonic atoms trapped by inter-
fering laser beams are well described by the Bose Hub-
bard Hamiltonian [12]

H = −J
∑

〈ij〉

(a†iaj+h.c)+
∑

i

(

U

2
ni(ni − 1) − µini

)

(1)

where a and a† are bosonic annihilation and creation op-
erators, J is the tunneling, and U is the on-site interac-
tion. We denote µi = µ−Vex(i), where µ is the chemical
potential and Vex(i) is the external potential at site i.
Disorder introduces a similar term in solid state Hamil-
tonians. The first sum is over all nearest neighbor sites
in the plane. In Figure 1, we show U and J as a func-
tion of lattice depth VR for 87Rb in a d = 680nm lattice
generated by light of wavelength λ = 1360nm, obtained
from the Wannier functions [13].

We calculate dynamics using a time dependent
Gutzwiller ansatz [12], which approximates the wave-

function by Ψ =
⊗

i

∑

m c
(i)
m (t)|m〉i where |m〉i is the m-

particle Fock state on site i, and the coefficients c
(i)
m (t) are

generally space and time dependent. In a homogenous
system [14], the excitation spectrum predicted by this



2

5 10 15 20 25
0

0.2

0.4

0.6

VR HERL

E
ne

rg
y

sc
al

es
HE

R
L

FIG. 1: Energy scales in 2D Bose Hubbard model as a
function of lattice depth [13]: Solid: 4J , Dashed: U , Dot-
ted: Two lowest k = 0 excitations from linearizing at unity
filling. Parameters: 87Rb in a d = 680 nm lattice.In the super-
fluid state, the Goldstone mode has zero energy. In the Mott
state, these modes represent the particle/hole excitations.

theory agrees well with other techniques [15]. Navez and
Schützhold [16] have been studying systematic improve-
ments of this method. The time-dependent Gutzwiller
is sufficiently sophisticated to yield the separation of
timescales which we wish to elucidate. Recent time-
dependent density matrix renormalization group calcula-
tions of the 1D Bose-Hubbard model find similar results
to ours [17].

This mean-field ansatz reduces Eq. 1 to a sum of single
site Hamiltonians Hi = −4t(〈αi〉∗ai+〈αi〉a†i )+4t|〈αi〉|2+
U
2 ni(ni − 1)− [µ− V (i)]ni at each site i. Truncating the
basis at each site to a maximum M particles, Hi is an
(M + 1) × (M + 1) matrix at each site, and depends on
the other sites only through 〈αi〉 = (1/4)

∑

〈j〉〈aj〉, where

〈aj〉 =
∑

m

√
m+ 1c

(j)
m+1c

(j)
m , and the sum over j includes

all four nearest neighbor sites.
Schrödinger’s equation i∂tψ = Hψ for Ψ yields a set

of differential equations for the cim:

i∂tc
i
m(t) = −4J(t)(〈αi〉∗

√
m+ 1cim+1 + 〈αi〉

√
mcim−1) +

(

U(t)

2
m(m− 1) − µim+ 4J(t)|〈αi〉|2

)

cim (2)

The tunnelings (J(t)) and on-site interactions (U(t)) are
dynamically tuned by changing the lattice depth in time.
We study population dynamics across the superfluid-
insulator transition by ramping the lattice linearly in
time using the protocol V (t) = Vi +(Vf−Vi)(t/τr), where
Vi and Vf are the initial and final lattice depths, and τr is
the ramp time. We consider a time independent radially
symmetric harmonic trap, Vex = 1

2mω
2(x2 + y2).

We approximate the ground state by finding the sta-
tionary solution to Eq. (2), cim(t) = e−iǫtcim, where ǫ can
be identified with the energy per site. We use an iter-
ative algorithm, starting with a trial αi, then find cim
by solving the eigenvalue problem in Eq. (2). We cal-
culate a new αi and repeat until the subsequent change
in αi is sufficiently small. To calculate time dynamics,
we use sequential site updates [18] in order to conserve

total particle number and energy (for time-independent
Hamiltonians).

The resulting dynamics describe the behavior of a sin-
gle quantum state, rather than a density matrix. Nev-
ertheless, the equations governing the time dependent
Gutzwiller ansatz are highly nonlinear and contain a
large number of degrees of freedom. This structure is
rich enough that under appropriate conditions time dy-
namics leads to thermalization, with (on average) energy
equally distributed among all modes.

Results.—We consider several different scenarios in or-
der to fully explore the response of this system to a lattice
ramp. We start by analyzing a homogeneous system: this
investigation yields the timescale for maintaining local
equilibration. This timescale sets the fundamental limit
for how fast equilibration can take place in the absence
of global mass transport. Similar to the Harvard exper-
iments [6], we find that local equilibrium can be main-
tained even under surprisingly rapid quenches through
the superfluid-Mott boundary.

Next we explore the requirements for maintaining
global equilibrium. We show that equilibration times
are much longer in systems requiring large amounts of
particle transport. This situation is exacerbated by the
presence of large Mott domains.

We conclude by showing that rapid global equilibration
can be achieved if the trap parameters are chosen in a
way as to minimize transport between intervening Mott
shells. Our results in this section are consistent with the
Münich experiments [7].

Local equilibration.—In an isolated homogeneous sys-
tem, ramping the depth of an optical lattice does not
lead to bulk mass transport. Instead, all of the temporal
dynamics simply involve the evolution of number fluctu-
ations and correlations. Thus equilibration is governed
by local physics and Eq. (2) reduces to the single site
problem. We numerically integrate this nonlinear set of
ordinary differential equations, taking J and U functions
of time, corresponding to a linear ramp of the lattice from
depth Vi to Vf. We vary Vi, Vf, and the ramp time τr.
We take all parameters to correspond to 87Rb atoms, and
take n = 1 particles per site.

At unity filling, near the Mott transition, we truncate
the basis to at most 2 particles per site. In this trun-
cated basis, the probability of having a single particle
per site P (1) is identical to the probability of having an
odd number of particles per site, which is the experimen-
tal observable in the Harvard experiments [6].

Both the gapped q = 0 single-particle excitations (see
Fig.1 and Ref.[15]), and the continuum of two-phonon ex-
citations contribute to the non-adiabatic evolution. All of
these modes are captured in a time-dependent Gutzwiller
framework [14]. One expects that the number of exci-
tations goes to zero as the ramp rate vanishes. When
gapped excitations of energy ∆ dominate the dissipation,
then the condition for adiabaticity is 1

∆2 d∆/dt≪ 1 [19].
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FIG. 2: (Color Online) Population dynamics at unity
density n = 1 (Top): Probability of having one particle per
site at the end of a lattice ramp from Vi/ER = 11 lattice
to (top to bottom) Vf/ER = 13(yellow), 15(green), 17(blue),
19(purple) and 25(red) after different lattice ramp times τr =
0.1/Ui ∼ 0.3ms to 10/Ui. Inset: Characteristic timescale τa

extracted from exponential fits to main figure. Fig.(3) of [6].

In Fig. 2 we show that the timescale for local equi-
libration is very short. Starting with a superfluid at
Vi = 11ER, we ramp up to different lattice depths. We
plot the time evolution of the probability that a single
particle sits at a given site as we vary the the ramp time τr
from 0.1~/Ui to 10~/Ui, where Ui = ~/3ms. This proce-
dure is identical to that used in the Harvard experiments
[6]. Fitting these curves to simple exponentials yields a
characteristic timescale τa, which, as we show in the in-
set, is comparable to U−1

i – a typical gap to particle-hole
excitations (Fig. 1). We conclude that these particle-hole
excitations are dominating the non-adiabatic processes.

Inhomogeneous dynamics.—We now consider an inho-
mogenous system by imposing a harmonic external po-
tential on top of the lattice. The protocol for lattice
ramps is same as before, starting with a superfluid at
11 recoil lattice depth. The central chemical potential is
chosen such that the central density is close to unity, jus-
tifying the truncated basis (M = 2) used here. Through-
out we define time in units of 2π/Ui where Ui is the on-site
interaction at Vi = 11ER equal to ∼ 2π× 300Hz. We use
a trapping frequency of ω = 25Hz.

In Fig. 3 we plot the density profile after a lattice ramp
from Vi = 11ER to Vf = 16ER in a time t = 120× 2π/Ui

for a system 30 × 30 sites containing 500 particles. As
shown already, this ramp is sufficiently slow to be locally
adiabatic. The parameters are chosen such that at later
times a large Mott region separates the central superfluid
from the superfluid at the edge.

We find that after this ramp the density profile of the
final state (dashed line) is very different from the equilib-
rium state at Vf(dotted red), implying a relaxation time
much longer the ramp time of 400ms. Indeed, further
simulations show that it is longer than the experimen-
tal timescale of seconds. In the remainder of this paper
we describe the cause of the slow equilibration, and con-
duct a number of additional simulations to illustrate how
equilbration times depend on the various experimental

parameters.
The major bottleneck for equilibration in Fig. 3 is mass

transport across the Mott region [20]. To illustrate the
spatial location of the Mott insulator, in Fig. 3(b) we plot
the coherences Ci ≡ −〈ai〉

∑

j〈a∗j 〉 as a function of time,
where i, j denote nearest neighbor pairs. Mott regions
(C = 0) show up as dark regions in the density plot.
The Mott plateau widens over time, isolating the central
superfluid. The peak atomic density in the initial lattice
exceeds that of the equilibrium state at the final lattice
depth. However the Mott region prevents mass flow from
the center to the edge.

Integrating out the fast variables will lead to hydro-
dynamic equations of the form ∂

∂t
n + ∇· j = 0 and

∂
∂t

j = −(n/meff) [(1/n)∇P + ∇V ] + Γj where j = nv
is the particle current, P is the pressure, V is the exter-
nal potential, and Γj encodes viscous forces and terms
which are higher order in the velocity and gradients of the
thermodynamic functions. This equation defines the ef-
fective mass meff , which can be extracted from the speed
of sound c and compressibility κ by meff = 1/κc2. In par-
ticularmeff diverges in Mott regions, where transport be-
comes diffusive. One naturally is lead to a circumstance
where Mott domains break the cloud is into discrete su-
perfluid regimes, each of which has independent chemical
potentials and temperatures.

This structure is elucidated in Fig.3 where we use the
zero temperature equation of state to plot µ[n(r)]+V (r)
as a function of space. In equilibrium, local density ap-
proximation predicts µ[n(r)] + V (r) = µ0, a constant.
One sees that ∇ [µ+ V ] = (1/n)(∇P − S∇T ) +∇V = 0
in each superfluid region, but that there is a gradient
in µ + V as one crosses the Mott domain. This clearly
shows that while the superfluid regions have equilibrated
amongst themselves, they are not in equilibrium with
each other.

A similarly long lived metastable configuration is be-
lieved to occur at the superfluid-normal interface of a
population imbalanced Fermi gas, where regions of po-
larized normal gas in local chemical equilibrium, are sep-
arated by an intervening superfluid region, with a spin
gap, that acts as a barrier to transport [21, 22].

Fast equilibration without transport.—Now we show
that equilibration times can be dramatically reduced
when parameters are chosen such that no bulk trans-
port across Mott regions is required. The parameters are
chosen to mimic the systems considered by Sherson et

al. [7], which attained global equilibrium on timescales
comparable to 100ms. Figure 4 shows the time-evolution
of an initial state at Vi = 11 at N = 800 in 2.5Hz trap,
and a central chemical potential of µ = 1.4U . We find
that after an evolution of τr = 25 × 2π/Ui, the final pro-
file (dashed) is close to the equilibrium T = 0 Gutzwiller
prediction (dotted).

Despite the fact that the n = 1 Mott region is of similar
size as Fig.3, we find faster equilibration times in this



4

-15 -10 -5 0 5 10 15
0.2

0.3

r HaL

Μ
Hn
Hr
LL
+

V
tr

ap
HE

R
L

-15-10-5 0 5 10 15
0

0.5

1

1.5

x Hunits of aL

nH
x,

y=
0L

FIG. 3: (Color Online) Slow transport across Mott
region (Top-Left) Evolution of an initial (solid) superfluid
state at Vi = 11ER and N = 500 in a 25Hz radial trap-
ping potential. Final density profile (dashed) after a ramp
τr = 120 × 2π/Ui ∼ 400 ms, is very different from the equi-
librium state (dotted) at Vf = 16ER. (Right) Density plot
of the time evolution of the coherences (Ci ≡ −〈ai〉

P

j
〈a∗j 〉)

features a growing Mott region which cuts off transport be-
tween the superfluid regions in the center and the edge, lead-
ing to a non-equilibrium final state at late times. Brighter
colors correspond to larger C. (Bottom-Left): A chemical
potential gradient is established between the superfluid re-
gions after dynamics (t = 400ms, dots). Within the Mott
domain, µ is not a unique function of n, and vertical lines
illustrate the range of values of the ordinate. In the initial
state µ + V (r) = µ0 is a constant. At the wings there are
no particles and µ + V (r) ∼ V (r). The fact that µ + V (r) is
roughly constant in the superfluid regions confirms that they
are in local equilibrium.
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FIG. 4: (Color Online) Fast equilibration in absence of
transport(Left): Evolution of an initial superfluid state for
Vi = 11ER and N = 800 (solid) in a 25Hz radial trapping
potential in a linear ramp with τr = 25× 2π/Ui = 80ms. The
dotted profile is the T = 0 equilibrium Gutzwiller profile at
V0 = 16ER for the same parameters. The final density profile
(dashed) agrees with the T = 0 equilibrium Gutzwiller profile.
(Right): Time evolution of the spatial coherence distribution,
showing the formation of an n = 1 and n = 2 Mott plateaus.
Lighter colors imply larger coherences. Cf. Fig.(2) in [7].

system. The difference is that here parameters are chosen
such that the total number of particles in the center is the
same in the initial and final states. Thus no transport is

needed across the Mott region.

Summary.—Motivated by experiments, we have
demonstrated a separation of timescales for local and
global equilibration for trapped bosons in optical lattices.
We also showed that the presence of a wide Mott region
can inhibit transport, producing isolated superfluid re-
gions which are in local equilibrium, but which have dif-
fering chemical potentials. The timescale for maintaining
local equilibrium is extremely short, being primarily gov-
erned by gapped single-particle excitations.
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