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We show that charged black holes in Anti-de Sitter spacetime can undergo a third order phase
transition at a critical temperature in the presence of charged fermions. In the low temperature
phase, a fraction of the charge is carried by a fermion fluid located a finite distance from the black
hole. In the zero temperature limit the black hole is no longer present and all charge is sourced by the
fermions. The solutions exhibit the low temperature entropy density scaling s ∼ T 2/z anticipated
from the emergent IR criticality of recently discussed electron stars.

PACS numbers:

‘Electron stars’, planar fluids of charged fermions in
Anti-de Sitter space (AdS), are a compelling holographic
framework to study metallic quantum criticality [1–3].
Key features of electron stars are emergent criticality at
low energy [1, 2] and the presence of a ‘smeared’ Fermi
surface [3]. Metallic criticality is difficult to study with
conventional field theoretic techniques as the many gap-
less excitations of the Fermi surface must be included in
a strongly interacting IR fixed point [4].

Zero temperature electron stars [2] are charged ‘soli-
tonic’ gravitational configurations without a black hole
horizon, fermionic analogues of zero temperature holo-
graphic superconductors [5]. Their existence is aided by
the gravitational well of the AdS asymptopia. At suffi-
ciently high temperatures we might expect the electron
star to collapse to a Reissner-Nordstrom black hole (RN).
This would be analogous to the first order transition to
a black hole undergone by zero temperature stars in AdS
with spherical, rather than planar, symmetry above a
critical mass [6]. This letter will show that electron stars
undergo a third order transition to a charged black hole
above a critical temperature. Cooling through the tran-
sition, the electron star birth, gives a continuous phase
transition in the nonzero density dual field theory char-
acterised by the appearance of a smeared Fermi surface.

We will study the dynamics of a 3+1 dimensional ideal
fluid of charged relativistic fermions coupled to electro-
magnetism and gravity with a negative cosmological con-
stant. The Lagrangian may be written

L =
1

2κ2

(
R+

6
L2

)
− 1

4e2
FabF

ab + p(µ, s) . (1)

This is the Schutz form of the action in terms of the fluid
pressure p [7], generalised to allow the fluid to be charged
[2]. The local chemical potential µ = |dφ+αdβ+θds+A|,
where {φ, α, β} are fluid potential variables, s the local
entropy density and θ the thermasy. This action leads to
the ideal fluid equations of motion, see e.g. [2, 7].

The fluid Lagrangian (1) is a coarse grained descrip-
tion in which fermion physics is subsumed into locally
defined thermodynamic quantities. In astrophysics this
is the Tolman-Oppenheimer-Volkoff description [8] while

in condensed matter physics it is known as the Thomas-
Fermi approximation [9]. The fluid Lagrangian (1) is a
correct description of the system when [2] e2 ∼ κ/L� 1 .
Without loss of generality we will take the fermions to
have unit charge and mass m. For detailed discussions
of the connection between microscopic and fluid descrip-
tions of gravitating fermions, see e.g. [6, 10].

The spacetime metric and Maxwell field take the form

1
L2
ds2 = −fdt2 + gdr2 +

1
r2
(
dx2 + dy2

)
, A =

eL

κ
hdt .

A crucial role is played by the local chemical potential

µloc. = At̂ =
At

L
√
f

=
e

κ

h√
f
. (2)

This chemical potential determines the local thermody-
namic quantities of the fermion fluid. Before specifying
these we need to clarify the role of nonzero temperature.
Periodically identifying the Euclidean time circle has two
consequences. Firstly is that for regularity of the space-
time, recall that we are in planar coordinates, we must
have a finite size black hole horizon in the interior. Sec-
ondly, the local fermion fluid equation of state is at finite
temperature. This describes a black hole surrounded by
a fluid in thermal equilibrium with the Hawking radia-
tion. In our bulk classical limit the effects of Hawking
radiation should be negligible, while the black hole re-
mains present. In this limit we can treat the fermions as
a zero temperature fluid in a black hole background. We
will make this statement precisely below.

The energy density, charge density and pressure of the
fermion fluid are therefore determined by the local po-
tential (2) via the zero temperature equation of state.
We introduce dimensionless hatted quantities which are
rescaled by factors of {e, L, κ} in such a way that no such
factors will appear in the equations of motion:

ρ = 1
L2κ2 ρ̂, σ = 1

eL2κ σ̂ , p = 1
L2κ2 p̂ , m̂

2 = κ2

e2m
2 .

The dimensionless thermodynamic variables are then

ρ̂ = β̂
∫ h√

f

m̂ ε2
√
ε2 − m̂2dε , σ̂ = β̂

∫ h√
f

m̂ ε
√
ε2 − m̂2dε, (3)
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and −p̂ = ρ̂ − h√
f
σ̂. Here β̂ depends on the ratio of the

Maxwell and Newton couplings and is order one in our
regime e2 ∼ κ/L [2]. The equations of motion following
from the action (1) are [2]

1
r

(
f ′

f
+
g′

g
+

4
r

)
+
ghσ̂√
f

= 0 , (4)

f ′

rf
− h′2

2f
+ g(3 + p̂)− 1

r2
= 0 , (5)

h′′ +
gσ̂√
f

(
rhh′

2
− f

)
= 0 . (6)

From (3), a nonvanishing density of fermions at a par-
ticular radius requires that the mass be lower than the
local chemical potential m̂ < h/

√
f . In the RN solution

f =
1
r2
−
(

1
r2+

+
µ̂2

2

)
r

r+
+
µ̂2

2
r2

r2+
, h = µ̂

(
1− r

r+

)
,

and g = 1/(r4f), one sees that h/
√
f is always bounded

with a maximum in between the horizon at r = r+ and
boundary at r = 0. Thus if m̂ is too large, the fluid den-
sity vanishes everywhere, ρ̂ = σ̂ = p̂ = 0, and RN is the
only solution. As the mass is lowered it will eventually
equal the local chemical potential at a critical radius

h√
f

∣∣∣∣
r=rc

= m̂ ,
d

dr

h√
f

∣∣∣∣
r=rc

= 0 . (7)

These two equations determine the critical radius at
which the star is born, dimensionlessly expressed as
rc/r+, and the critical temperature of the black hole over
the rescaled chemical potential TC/µ̂. The temperature
is T = 1/(4πc) |df/dr|r=r+ . At this point c = 1, we have
included this factor for later convenience.

Figure 1 plots the critical radius and critical tempera-
ture as a function of the fermion mass. The electron star
forms at increasingly low temperatures, and closer to the
black hole horizon, as the fermion mass is increased. Be-
yond m̂ = 1 the star is never formed, consistent with the
observation [2] that m̂ < 1 is necessary for the zero tem-
perature electron star to exist. The plots in figure 1 do
not depend on the fluid equation of state (3). In fact, the
conditions (7) simply characterise the radius at which a
charged point particle can remain stationary, with grav-
itational and electromagnetic forces balancing.

Cooling below the critical temperature we will find two
solutions {r1, r2} to the equation µloc. = m defining the
boundary of the star. The electron star broadens into a
thin shell. The solution at T < TC has three components:

1. Inner region, r > r2. The solution is RN, but µ̂ →
µ̂0, not directly the dual field theory chemical potential.

2. Intermediate region, r2 > r > r1. Here we must
solve the equations (4) to (6) with ρ̂, σ̂, p̂ nonzero. The
quantities {f, g, h, h′} must be matched onto the inner
and exterior regions at r2 and r1.

3. Exterior region, r1 > r. Again RN, although now

f = c2
(

1
r2
− M̂r + 1

2r
2Q̂2

)
, g =

c2

r4f
, h = c

(
µ̂− rQ̂

)
.
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FIG. 1: Critical temperature (top) and radius (bottom) of
electron star birth, as a function of fermion mass.

The factor c, determining the normalisation of time, was
included in the definition of the temperature above.

The solutions can be parametrised by r+µ̂0 in the in-
ner region. Via matching at r2 and r1, this initial con-
dition integrates forward to determine the values of the
dual field theory quantities {c, M̂ , Q̂, µ̂}. The solutions
can then be labelled by the physical dimensionless ratios
T/µ̂ or T/TC . Figure 2 shows an example of how the
fermion density σ̂ builds up and extends to the horizon
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FIG. 2: Radial density profile of an electron star as a func-
tion of temperature. Curves show five temperatures between
0.07TC and TC , with µ̂ held fixed. With β̂ = 10 and m̂ = 0.7.

(r2 → r+) as the temperature is lowered. In reading this
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plot one should keep in mind [2] that the total charge in
the fermion fluid will be Q̂ferm. =

∫ r2
r1
σ̂(s)

√
g(s)/s2 ds ,

including the spatial volume element
√
g/r2.

The charge density of the boundary field theory, read
off from the exterior solution, is Q̂ = Q̂BH+Q̂ferm. , where
the charge density carried by the black hole is Q̂BH =
µ̂0/r+ . The presence of the fermionic charge density is
the defining bulk characteristic of the electron star. The
fraction of charge carried by the fermionic fluid, (Q̂ −
Q̂BH)/Q̂, is a sort of bulk order parameter. The ratio
is zero above the critical temperature and, given that at
zero temperature all the charge is carried by fermions [2],
should tend to unity at low temperatures. Figure 3 shows
precisely this phenomenon. The rate of charge transfer
does not depend monotonically on the fermion mass.
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FIG. 3: The fraction of charge carried by the fermion fluid as
a function of temperature. All curves have β̂ = 10 while from
blue to red (solid to dotted) m̂ = {0.01, 0.07, 0.3, 0.55, 0.75}.
In quoting T/Tc, the chemical potential is kept fixed.

Our observations so far suggest that the electron star
birth is a continuous phase transition in the system. To
make this claim precise, we must compute the behaviour
of the free energy across the transition. The free energy
density of the theory is most easily obtained from the
thermodynamic relation Ω̂ = M̂− µ̂Q̂− ŝT . Here ŝ is the
(rescaled) Bekenstein-Hawking entropy density given by
ŝ = 8π

4r2+
. It was shown in [2] that the thermodynamic re-

lation held for zero temperature electron stars by showing
that the Lagrangian (1) was a total derivative on shell.
In the presence of a nonzero temperature horizon, there
is an additional contribution to the on shell action at the
horizon that contributes the necessary ŝT term.

Figure 4 compares the free energy of two electron stars
with RN in the absence of a fermion fluid. The first
observation is that the free energy of the stars is indeed
lower than that of RN below the transition temperature

at which the star is born. Secondly, the transition is
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FIG. 4: Free energy of RN (top, red) and of two electron stars
(blue) as a function of temperature. The electrons stars have

β̂ = 10 and m̂ = 0.2 (lower) and m̂ = 0.3 (upper).

extremely soft. Fitting to high precision numerics, we
find the transition is third order, so that ∆Ω ∼ (TC−T )3.
This fact can be understood analytically as follows.

Below the critical temperature the fluid has width
∆r = r2− r1. Solving the conditions µloc.(r1,2) = m per-
turbatively at small T−TC , using the background RN ge-
ometry, gives to leading order ∆r/r+ = # (1−T/TC)1/2 .
Here and below # refers to a complicated but computable
mass dependent number. The backreaction of the fluid
on the black hole solution is subleading. The leading or-
der difference in free energies is simply the contribution
of the fluid to action (1):

∆Ω̂ = −
∫ r2

r1

p̂
√
fg/r2dr = −# β̂ T 3

C (1− T/TC)3 . (8)

The scaling follows immediately from that for ∆r/r+ to-
gether with the facts that, from (3), we have p̂ ∼ δµ̂

5/2
loc.

for µ̂loc. = m̂ + δµ̂loc. and that δµ̂loc. = O
(
(∆r)2

)
.

This second statement in turn follows from the fact
that the local chemical potential may be approximated,
again simply using the RN geometry, by the parabola
µ̂loc. = m̂ + #(1 − T/TC)1/2∆r/r+ − #(∆r/r+)2 just
below the transition temperature. To determine the co-
efficient in (8), one should use the expression (3) for the
pressure together with the parabolic expression for µ̂loc.

and perform the integral. This can be done either nu-
merically or analytically. Some illustrative values for the
coefficient # in (8) are

m̂ = 0.1 m̂ = 0.3 m̂ = 0.5 m̂ = 0.8
# = 0.0139 # = 0.7489 # = 3.529 # = 27.02 .

We have checked that these values agree to within around
one part in a hundred with the values obtained by fitting
the output of a full numerical integration of the equa-
tions of motion (using Mathematica’s NDSolve with
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WorkingPrecision set to 30). This confirms that (8) is
correct. There is a third order phase transition.

A second interesting thermodynamic observable is the
entropy density. An emergent IR criticality with dynam-
ical critical exponent z implies that at low temperatures,
T � µ̂, the entropy density scales as ŝ ∼ T 2/z. This scal-
ing was previously exhibited in a different holographic
system in [11]. Figure 5 shows the entropy as a function
of temperature for RN together with three electron stars.
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FIG. 5: Temperature dependence of entropy density. Red line
(top) is RN. Blue lines (lower) are electron stars with β̂ = 20.
From left to right, m̂ = 0.7, 0.36, 0.1. Fitting to a power law
at low temperatures gives z ≈ 5.4, 2, 1.5, respectively.

The RN entropy density tends to a constant at zero tem-
perature (z = ∞) while those of the electron stars tend
to zero. Fitting the numerical output to a power law, we
can read off z. The values obtained, quoted in the cap-
tion of figure 5, agree with the zero temperature results
of [2] to within one part in a hundred.

Two issues remain. First, the consistency of zero tem-
perature fluids in black hole backgrounds. The Euclidean

time circle is periodically identified with radius 1/T . The
local charge density in (3) therefore includes thermal ex-
citations σ = 2π2β

∑
±±

∫
d3p

(2π)3

(
1 + e(E∓µloc.)/Tloc.

)−1
.

The local chemical potential is again (2). The local tem-
perature Tloc. = T/

√
gtt = T/L

√
f . From the definitions

and our limit, Tloc./µloc. = O (κ/eL) � 1 . The local
fermion fluid may be treated at zero temperature.

Finally, an order parameter of the boundary quan-
tum field theory. The bulk microscopic fermion field is
dual to a ‘single trace’ fermionic operator Ψ in the dual
quantum field theory. It is useful to Fourier decompose
this operator into creation operators c†ω,k [3, 6]. A natu-
ral boundary quantity is the generalized fermion density
n =

∫
dω d2k
(2π)3 〈c

†
ω,kcω,k〉 . This expectation value is com-

puted as follows. Each bulk fermionic state corresponds
to a solution of the Dirac equation in the background
electron star spacetime. Although within our Thomas-
Fermi description the local fermion density drops to zero
at the outer boundary of the electron star, each occu-
pied state will have a nonvanishing tail that reaches the
boundary of the spacetime [13]. Squaring the coefficient
of each {ω, k} mode will determine the expectation val-
ues via the usual holographic dictionary. It should be
possible to perform this computation explicitly.

In our bulk semiclassical limit, the generalized fermion
density is nonzero at low temperatures but vanishes
above TC . This order parameter does not break any
symmetries. A third order transition is somewhat ex-
otic, and deserves a better field theoretic understanding.
Away from the semiclassical limit, thermal excitations
imply that the fermion density is never exactly zero.
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Noted Added. The preprint [12] overlaps with our re-
sults, which agree with a revised version of that preprint.
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