
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Are there Traps in Quantum Control Landscapes?
Alexander N. Pechen and David J. Tannor

Phys. Rev. Lett. 106, 120402 — Published 22 March 2011
DOI: 10.1103/PhysRevLett.106.120402

http://dx.doi.org/10.1103/PhysRevLett.106.120402


LB12609

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Are there traps in quantum control landscapes?

Alexander N. Pechen and David J. Tannor

Weizmann Institute of Science, Rehovot, Israel

There has been great interest in recent years in quantum control landscapes. Given

an objective J that depends on a control field ε the dynamical landscape is defined

by the properties of the Hessian δ2J/δε2 at the critical points δJ/δε = 0. We show

that contrary to recent claims in the literature the dynamical control landscape

can exhibit trapping behavior due to the existence of special critical points and

illustrate this finding with an example of a 3-level Λ-system. This observation can

have profound implications for both theoretical and experimental quantum control

studies.
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Quantum control aims to manipulate the dynamics of physical processes on the atomic

and molecular scale. It is a rapidly growing field of science with numerous applications

ranging from selective laser-induced atomic or molecular excitations to high harmonic gen-

eration, quantum computing and quantum information, and control of chemical reactions

by specially tailored laser pulses, etc. [1–5].

Generally quantum control problems can be formulated as the maximization of an ob-

jective function J(ε) by a suitable optimal control ε. A wide variety of quantum control

phenomena, selective bond breaking, etc. can be described by control objectives of the

form J(ε) = Tr[Uε(T )ρ0U
†
ε (T )O], where O is an operator describing the target, ρ0 is the

initial density matrix and Uε(T ) is the evolution operator under the action of the control ε

satisfying the equation
dUε(t)

dt
= −i[H0 − µε(t)]Uε(t) , (1)

where H0 is the free system Hamiltonian and µ is the dipole moment.

The objective J = J [ε] as a function of the control ε defines the landscape of the control

problem. The structure of the landscape determines the complexity of the underlying control

problem. Particularly important features of a control landscape are traps — local maxima

of J(ε). Traps can have a profound influence on both theoretical and experimental quantum

control studies — they can slow down or even prevent finding globally optimal controls and

can lead to erroneous physical conclusions about optimal processes and robustness. We

show that contrary to recent claims in the literature [6–11] the dynamical control landscape

can exhibit trapping behavior due to the existence of special critical points and illustrate

this finding with an example of a 3-level Λ-system. This observation can have profound

implications for both theoretical and experimental quantum control studies.

To understand why traps are significant, consider the generic problem of finding a globally

optimal control ε∗ such that J(ε∗) = Jmax = max
ε

J(ε). Unless the system is extremely

simple, numerical or laboratory optimization algorithms generally need to be employed.

The prevailing theoretical methods start from an initial trial control ε and use gradient

and Hessian (first- and second-order) information to explore the neighborhood for a control

with better performance. This new control is then used as a new starting point and the

process is iterated. Experimentally, evolutionary algorithms are commonly used. While

these algorithms are not strictly first- or second-order, each new generation of controls still

has a propensity to explore the neighborhood of the previous generation. If the control
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FIG. 1. (Color online). Left: Cartoon of a landscape without traps (local maxima). All peaks

are of the same height and thus all of them are global maxima. From Science 303, 1998 (2004).

Reprinted with permission from AAAS. Right: Cartoon of a landscape with traps. The landscape

has one highest peak representing the global maximum and several peaks of lower height repre-

senting multiple local maxima. Both landscapes are plotted for two control variables, xj and xk,

representing the control field ε(t) at two different time moments. The actual number of variables

in practical applications may be several hundreds. A local search over the landscape on the left will

eventually reach a global maximum, due to the absence of traps. However, a local search over the

landscape on the right will most likely find a trap, ending the search process without ever finding

the highest peak.

landscape has traps then first- and second-order algorithms, which effectively are providing

only a local search over this landscape, can be prevented from reaching a globally optimal

solution ε∗. Thus, the existence or absence of traps is a significant characteristic for any

control landscape. Fig. 1 shows landscapes with and without traps.

The analysis of quantum control landscapes was performed in a series of pioneering

works [6–11]. Extrema of trace functions over unitary and orthogonal groups were also

studied in a different context [12, 13] and in the context of quantum control [14, 15]. The

analysis in [6–11] concluded the absence of traps. In subsequent work it was established that

this conclusion was under the implicit assumption that the Jacobian δUε/δε has full rank at

any point. Although this assumption was shown to be violated at times [20], is was believed

to be generally applicable. Recently, a particular example of a trap was constructed [21].

The present paper significantly advances the field by showing that second order traps —

points at which the Hessian H = δ2J/δε is negative semi-definite — exist in a wide class of
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quantum control systems [22].

We begin our discussion by distinguishing between the dynamic and the kinematic control

landscapes. Until now we have been discussing the functional J [ε], but one may also consider

the simpler functional J [U ], where the dependence of U on ε is suppressed:

JK[U ] = Tr[Uρ0U
†O] (2)

Equation (2) defines the kinematic control landscape. A dynamic critical point (DCP) is

defined by ∇J(ε) = δJ(ε)/δε = 0 whereas a kinematic critical point (KCP) is defined by

∇JK(U) = δJ(U)/δU = 0, where ∇ denotes gradient. Dynamic and kinematic traps are

subopimal maxima for J [ε] and JK[U ], respectively.

Assuming complete controllability, i.e. that U in (2) can be any unitary operator, the

kinematic control landscape is known to be free of traps: all critical points of JK[U ] are

either global maxima and minima, or saddles [16]. This result implies that the dynamic

control landscape will be trap-free if one additionally assumes that the Jacobian δUε(T )/δε

has full rank at any ε [17, 18]. Indeed, by the chain rule,

δJ(ε)

δε
=

δJK[Uε(T )]

δUε(T )

δUε(T )

δε

and hence under the full rank condition all DCP are at KCP and have exactly the same

critical point structure as the corresponding KCP [19].

Our first result concerns the inequivalence of critical point structures. To find the con-

dition for a KCP of (2) we take any infinitesimal variation of U in the form U → U ′ =

U(1 + δU) [16]. Unitarity of U ′ up to the first order in δU implies δU † = −δU , i.e.

δU is anti-Hermitian, and hence the variation of the objective JK with respect to U is

δJK = JK[U ′] − JK[U ] = Tr{δU [ρ0, OT ]} + o(‖δU‖), where OT = U †OU . If U is a criti-

cal point for JK[U ], then the condition δJK = 0 needs to hold for any anti-Hermitian δU ,

implying that

[ρ0, OT ] = 0 . (3)

Equation (3) is the condition for a KCP. All U satisfying the condition (3) were shown

to be either global maxima, minima, or saddles [16], and therefore second order traps do

not exist for kinematic control landscapes. Dynamical critical control fields that violate (3)

were shown to exist for the problem of optimal population transfer between two pure states

of a quantum systems [21]. We have been able to generalize this finding by showing that
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such fields exist not only for optimal population transfer between two pure states, but for

maximizing the expectation value of a more general class of observables. The proof is given

in Section 3 of the Supplementary material [23]. This inequivalence of the critical points in

the dynamic and kinematic landscapes is an indication of the breakdown of the full rank

assumption.

We now turn to our main result. For a general class of systems there exist dynamical

critical controls ([ρ0, OT ] = 0) that are second order traps due to the violation of the full

rank assumption. In particular, second order traps appear in the dynamical control land-

scape whenever the dipole moment satisfies µij = 0 for some i 6= j (i.e. if a direct transition

between some pair of levels is forbidden). In this case there exists an initial density matrix

and a target operator such that ε(t) = 0 is a second order trap. (Note that the condition

µij = 0 can be consistent with the assumption of complete controllability of the system pro-

vided that the levels i and j are connected indirectly through other states.) More generally,

a control ε(t) = ε0 is a second order dynamical trap if in terms of the spectral decomposition

H̃0 = H0 − µε0 =
∑n

i=1
h̃i |̃i〉〈̃i| the initial density matrix and target operator have the form

ρ0 = |k̃〉〈k̃| and O =
∑n

i=1
λi |̃i〉〈̃i|, where 1 < k < n and λ1 > λ2 > . . . > λn, and the

dipole moment satisfies 〈̃i|µ|k̃〉 = 0 for all i < k. (Again, the condition that 〈̃i|µ|k̃〉 = 0 for

any i < k < n can be consistent with the controllability assumption if the dipole moment

connects the state |k̃〉 with all states |̃i〉 for i < k through other states.) To prove this

finding, we explicitly compute the Hessian and show that it is negative semidefinite under

the above conditions; the details of the proof are given in Section 2 of the Supplementary

material [23].

The simplest example of such a second order trap appears in the problem of maximizing

the expectation of an operator O =
∑

3

i=1
λi|i〉〈i| with λ2 > λ1 > λ3 for a three-level Λ-atom

initially in the state ρ0 = |1〉〈1|. The dipole moment for Λ-atom satisfies µ12 = 0, consistent

with the controllability assumption if µ13 6= 0 and µ23 6= 0. Globally optimal control fields

steer |1〉 completely into |2〉 producing the global maximum of the objective with value

Jmax = λ2. The control field ε(t) = 0 produces a second order trap with the objective value

J = λ1 < Jmax.

In conclusion, we have established that second order traps in quantum control landscapes

exist in a wide range of quantum systems. More research will be required to establish if these

points are true traps, but for the local search algorithms currently in use second order traps
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FIG. 2. The simplest example of a quantum system possessing a second order trap is a 3-level Λ-

system initially in the ground state. The control field ε(t) = 0 is a second order trap for maximizing

expectation of any target operator of the form O =
∑

3

i=1 λi|i〉〈i| with λ2 > λ1 > λ3.

pose virtually all the same numerical and experimental difficulties as true traps. Moreover,

since the present work establishes that the full rank assumption is violated for a wide class

of quantum systems, the previous claims of the absence of traps, which were based on this

assumption, have to be completely rethought.
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