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Abstract 

We present the first quantitative measurements of shape and energy variation in non-

Euclidean plates. Using environmentally responsive gel, we construct non-Euclidean 

discs of constant imposed Gaussian curvature, Ktar. We vary the discs thickness, t0, 

and measure the dependence of configurations, surface curvature and energy content 

on t0. For Ktar<0 configurations are of a single wavy mode, and undergo a set of 

bifurcations that leads to their refinement with decreasing thickness. This leads to 

sharp increase in the amount of surface bending as t0→0 ,and toa slow decay of both 

bending and stretching energies. Both vary like t0
2, compared with t0

3  of the bending 

energy in discs with Ktar>0. 

 

Recently there is an increasing interest in the construction of structures that are 

capable of inducible large shape transformations. An interesting group of such bodies  

is that of non-Euclidean elastic plates. These structures can be generated by 

irreversible deformations of originally flat plates 1, 2, the non-uniform swelling or 

shrinkage of plates 3, or from non-uniform, yet lateral, growth of natural sheets 4. 

Though intrinsically uniform across their thickness (thus called plates) the intrinsic 

two-dimensional (2D) geometry of the mid surface of these sheets is non-Euclidean. 

The laterally non-uniform expansion/shrinkage of the sheet specifies a 2D "target 

metric" tensor, gtar, with non vanishing Gaussian curvature 5, Ktar (thus the term non-

Euclidean) (see [6], [7]). As a result the plates buckle into three-dimensional (3D) 

configurations that are consistent with the target metric. Small changes in the target 

metric can lead to qualitative and substantial quantitative differences in the selected 

configurations. This sensitivity is of potential interest for different applicative fields, 

such as bio-mechanics and soft robotic, in particular when the plates are generated 

with environmentally responsive materials, as in [3]. 

Different theoretical approaches have been used in order to study the 

configurations adopted by non-Euclidean plates, including 3D 8 and 2D 9 numerical 

simulations, purely geometrical analysis 10 and an analytical study of different 

approximations of the problem 11,12.  



Recently we have used environmentally responsive gels to construct non-

Euclidean elastic discs with an inducible, axi-symmetric, prescribed target metric 3. 

When the imposed metric was hyperbolic (Ktar<0), the discs adopted multi wave 

configurations, breaking the axial symmetry. The basic shape selection of such 

hyperbolic plates is still not well understood. Specifically, what determines the 

wavelength cascade? Does the thickness only provide a cutoff scale, or is there an 

explicit dependence of wavelength on t, which can lead to singular behavior in the 

limit t→0? 

One can identify three quantities with length dimensions that can play a role in 

determining wavelength selection: The sheet thickness, t, the disc radius, R, and a 

geometrical length, ~ .Which combination of the above determines the 

waviness? In previously studied cases 9,2 Ktar varied across the disc, leading to 

L=L(r), with no fixed length scale. Having a constant value of L across the discs will 

result in three length scales, enabling isolation of the affect of each of these scales on 

the wavelength. 

In this work we constructed gel discs with a prescribe constant Gaussian curvature, 

Ktar=Const, resulting in L being constant across the discs. We used a fixed Ktar and 

radius R for all discs, varying only the initial sheet thickness t0. This enables us to 

study both the scale dependence and the behavior as t0→0. Three main observations 

are made for all hyperbolic (Ktar<0) discs: Wavy patterns are of a single (azimuthal) 

mode (no multi-wave configurations were observed); There is an explicit dependence 

of wavelength on plate thickness; The amount of surface bending strongly increases 

with decreasing thickness, leading to a "slow" decay of  bending energy, Eb~ t0
2. For 

Ktar>0, the amount of surface bending is bounded, and the energy decays as in 

"regular" buckling, Eb~ t0
3.   

Axially symmetric N-IsoproPylAcrylamide (NIPA) hydro gel discs were prepared as 

in [3], with the addition of explicit control of the radial dependence of the NIPA 

concentration, C(r). Above 33C0 a radially dependent (though locally isotropic) 

shrinkage of distances on the discs, η(r)= η(C(r)), occurs, with η ranging from 0.4 to 

0.9 within each disc. This allows using C(r) as a knob, to program gtar (and thus Ktar) 

on the discs. In the current work we have constructed NIPA profiles C(r) that result in 

a constant Gaussian curvature |Ktar|= 0.0011 mm-2 on all the discs. The corresponding 

η(C(r)) yield first fundamental forms: ( )2 2 1 2 2sintar tardl d K K d−= ρ + ρ θ , for Ktar>0, 



and ( )2 2 1 2 2sinhtar tardl d K K d−= ρ − ρ − θ , for Ktar<0 . Here θ is the azimuthal 

coordinate and 
0

( )
r

r dr′ ′ρ = η∫  is the radius on the surface after shrinkage. 

Disc radii were fixed at ρmax ≡ R=28 (+/- 1) mm. discs’ thickness (prior to shrinkage) 

t0 was 0.1-1.5 mm. The discs were heated and dried as in [3] and their topography was 

measured optically with horizontal and vertical resolutions of 25μm and 5μm, 

respectively. A semi geodesic (see [5])polar coordinate system, (ρ, θ) was defined on 

the measured surfaces, and the local Gaussian (K(ρ, θ)) and mean (H(ρ, θ)) curvatures 

were computed for each disc. Direct thickness measurements on selected discs show 

that, to a good approximation, the local thickness following shrinkage is given by 

t(r)=t0η(r). 

 

 

Figure1: Variation of configurations with thickness. Discs of Ktar= 0.0011 mm-2 (left) and 

Ktar= -0.0011 mm-2 (middle and right) of various initial thicknesses (t0=0.75, 0.6, 0.25, 0.19 and 

0.125 mm top to bottom). For Ktar>0 the discs keep the same basic shape, a hemisphere, with minor 

variations, along the edge. The discs of Ktar<0 undergo a set of bifurcations, in which the number of 

nodes, n, increases with decreasing thickness. Surface amplitude of hyperbolic discs (Right) shows 

that each configuration consists of a single wavy mode (The color bar, in mm, is common to all 

figures).  

 

For varying thickness, two qualitatively different behaviors are observed (Fig. 1): All 

discs of Ktar>0 attain a dome-like configuration. On the other hand, the shape of the 

discs of Ktar<0 strongly depends on the thickness. Thick discs (Fig.1 top middle pane) 

attain a single saddle configuration.As t0 decreases this configuration is replaced by 

multi-node wavy configurations. Unlike previously studied sheets 1, 8, 9, 2 all observed 
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configurations contain only a single wave mode . Multi scale patterns are, thus, not a 

must in hyperbolic sheets. 

A configuration of n nodes can be written as z(r,θ)= An(r)Φ(nθ), where Φ is an 

unspecified normalized function, and is characterized by the number of nodes, n, and 

the amplitude profile, An(r). Plotting n verses the thickness, t0, shows a series of shape 

transformations, namely a refinement of the wavelength with decreasing thickness, 

where the number of nodes is roughly proportional to .  (Fig. 2a). Surface 

measurements show that An(r)increase convexly towards the margins(Fig.2b). This is 

expected for the observed single mode configurations, since in these hyperbolic discs 

the perimeter increases faster than linearly with ρ. The increase in n is accompanied 

by a simultaneous decrease in An(r), while the rescaled profiles, nAn(r) collapse onto a 

single curve (Inset of Fig. 2b). A rough estimation of the typical azimuthal and radial 

curvatures of the observed profiles gives ~  and ~  respectively. 

Assuming that the observed configurations roughly conform with the target metric, 

K~Ktar (Where ), and thus 
( ) 2

2
n nrr

tar

A A n
K const

r
≈ − = . This leads to the 

estimation: 
2

( )n tar
rA r K
n

≈ , which is consistent with the scaled data (solid line in 

the inset of Fig. 2b). Thus, on average, all configurations well approximate the target 

metric.  

We turn our attention to the bending content of the discs, B(r)~4H(r)2-K(r)., whichis 

related to the total bending energy of a configuration by: 2 3~bE d t∫∫ r B(r) ,  and is 

not uniquely determined by the metric5.  The spatial average of B(r), <B>, for discs of 

various thickness is shown inFig. 3 a. For Ktar>0, the bending content slightly 

increases with decreasing thickness, stabilizing and approaching a constant value, of 

the order of the prescribed Ktar ,. On the other hand, discs of negative curvature bend 

more and more with decreasing thickness. For the thinnest discs generated, of t0=100 

μm, the average bending content is an order of magnitude larger than K . This 

increase in <B> at small thickness is a direct result of the refinement process: The 

mean curvature attains values on the order of ~
 
 leading 

to the relation <B>~n2 for large n. As n~t0
-0.5 (Fig. 1), we expect to have <B>~t0

-1, 

which implies a divergence of the bending content in the limit t→0.  



 

Figure2: (a) The number of nodes, n, as a function of sheet thickness for discs of Ktar= -

0.0011 mm-2. A log-log plot (inset) shows that the data are well described by n~t0
-0.5 (solid line). (b) 

The amplitude of the waviness, A, as a function of radius on the buckled disc, for configurations with 

different number of nodes, n= 2 to 6 (open squares down to stars). Inset, Multiplying A(r) by n leads 

to data convergence that is well described by 2( )n tarnA r K r=  (solid line). 

 

Indeed, <B>~t0
-1 (inset of Fig 3a) and persists to the smallest thickness, without any 

saturation. We thus believe that refinement of the wavy configurations, together with 

the increase in the bending content, would persist to thickness significantly smaller 

than 0.1 mm. 
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Figure 3: Scaling of curvature and energy. (a) The average bending content, <B>, as a function of 

sheet thickness. For Ktar<0 (solid circles)<B> increases sharply with decreasing thickness to values an 

order of magnitude larger than K . For Ktar>0, <B> is "saturated" at small thickness. Plotting the same 

data on a log-log scale (inset) shows that for Ktar<0, <B>~t0
-1 (solid line). (b) The total bending energy 

in a disc versus thickness. In the discs of  Ktar>0 (open triangles) the energy decays like t0
3±0.1 (dotted 

line), while for Ktar<0 (solid circles) the bending energy scales like t0
1.9±0.1 (solid line). 

 

The different dependence of bending content on t in the elliptic and hyperbolic discs, 

leads to different decay of the Eb with decreasing thickness (Fig. 3 b).  For Ktar>0, the 

bending energy decays as t0
3, while for Ktar<0, it decays much more slowly, as t0

1.9±0.1. 

This suggests that the refinement is a stretching driven process. The sharp increase in 

bending content must be compensated by a simultaneous (and fast enough) decrease 

in stretching content with n.  

The stretching energy is given by ~ . S(r), the stretching content, is 

expressed by local differences between the actual metric of the disc, g (ρ,θ), and the 

target metric 13. In our system, these differences are too small to be measured directly. 

However, measurements of the local Gaussian curvature can provide information 

about the variation of stretching content with thickness. Using the connection between 

a metric of a surface and its Gaussian curvature (Gauss Theorema Egregium), one can 

formally express S(r) in terms of the differences between the actual and target 

Gaussian curvatures; ΔK(ρ,θ) K(ρ,θ)-Ktar. Configurations in which ΔK=0 

everywhere have zero stretching, while for ∆ 0, which fluctuates around zero 

over a typical scale L, the stretching content is of  order ΔK2 L4. As Ktar=const= -

0.0011 mm-2,  ΔK(ρ,θ)= K(ρ,θ)+0.0011, regardless of the position on the disc14. The 

spatially averaged value of the measured Gaussian curvature, <K>, roughly equals 

Ktar (i.e. Δ 0) independently of t0 (Fig.4). This is an additional indication that all 

configurations are close to embeddings of the target metric. This, however, does not 

imply that the local value of K equals Ktar. We find that ΔK oscillates azimuthally, in 

correlation with the surfaces' waviness (see [3] ). This implies that as the number of 

nodes, n, increases, the oscillation scales decrease as L~1/n . The stretching content 

within a disc of n nodes is, therefore proportional to . Using this connection we 

find that the stretching content of the hyperbolic discs varies linearly with the 

thickness (Fig. 4).  This implies that the stretching energy scales as  , like the 

bending energy. Therefore, unlike discs of K>0 15, in hyperbolic discs there is an 

equipartition of bending and stretching energies. 
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Figure 4: The average value of the Gaussian curvature (stars) is close to Ktar 

for all disc thickness indicating that on average all configurations are nearly stretch-

free. Estimation of the stretching content by  (triangles) shows a linear 

(solid line) dependence on the initial thickness.  

Using discs of constant target Gaussian curvature we have quantitatively measured 

and characterized two qualitatively different energy minimization strategies in non-

Euclidean plates. Discs of 0 minimize their energy via the scenario discussed 

in [16] i.e. by settling “near” the isometric embedding of gtar , which is of lowest 

bending content, and smoothly approach it as the thickness decreases. As a result the 

only morphological changes are within their boundary layer, their bending content is 

bounded (by that of the selected embedding) and their bending energy decays like t0
3. 

Hyperbolic discs, on the other hand, minimize their energy via a set of bifurcations 

that lead to refinement of wavy configurations (without necessarily forming multi-

scale configurations as was observed previously). With decreasing thickness, their 

bending content increases roughly as t0
-1, leading to slow decrease of their bending 

energy, ~ .Their stretching energy scales as t0
2, as well, indicating an 

equipartition of stretching and bending energies. 

The observed refinement is far from trivial. Different explicit constructions suggest 

that for finite surfaces of 0 there exist exact embeddings with finite 

bending content17,18. In this case one would expect the hyperbolic disc to behave 

similarly to the elliptic ones, i.e. via the scenario discussed in [16]. This is not what is 

found in our experiments. When considering the possible origin of this contradiction, 

one should remember that for every physical system, the accuracy of determining the 

target metric is finite. In our experiments the deviations of the imposed metric from 

the analytical expressions were below 2%. It well could be that for hyperbolic metrics 



(and not for elliptic ones) there is an unusual sensitivity for “perturbations” to gtar. We 

hope the results presented in this paper will motivate theoretical and numerical studies 

that will shed light on the observed behavior. 

Acknowledgments This work was supported by the United States-Israel Binational 

Foundation (grant 2004037),the ERC SoftGrowth project and the NSF through award 

DMS-0807501. 

 

References 

1 E. Sharon, B. Roman, M. Marder, et al., Nature 419, 579 (2002). 
2 E. Sharon, B. Roman, and H. L. Swinney, Phys. Rev. E 75 (2007). 
3 Y. Klein, E. Efrati, and E. Sharon, Science 315, 1116 (2007). 
4 U. Nath, B. C. W. Crawford, R. Carpenter, et al., Science 299, 1404 (2003). 
5 B. O'neill, Elementary Differential Geometry (Academic Press, New York, 

1997). 
6 M. Marder and N. Papanicolaou, Jour. Stat. Phys. 125, 1069 (2006). 
7 E. Efrati, Y. Klein, H. Aharoni, et al., Physica D 235, 29 (2007). 
8 M. Marder, E. Sharon, S. Smith, et al., Europhys Lett 62, 498 (2003). 
9 B. Audoly and A. Boudaoud, Phys. Rev. Lett. 91 (2003). 
10 S. Nechaev and J. Voiturier, Phys. A 34, 11069 (2001). 
11 J. Dervaux and M. Ben Amar, Phys. Rev. Lett. 101 (2008). 
12 C. D. Santangelo, Europhys Lett 86 (2009). 
13 E. Efrati, E. Sharon, and R. Kupferman, Jour. Mech. Phys. Solids 57, 762 

(2009). 
14 In general, Ktar itself is a function of the Lagrangian position on the sheet, 

while the surface measurements provide K in Eulerian coordinates. In such 
cases it is impossible to correctly calculate ΔK. 

15 E. Efrati, E. Sharon, and R. Kupferman, Phys. Rev. E 80, 016602 (2009). 
16 M. Lewicka and M. R. Pakzad, Preprint  (2009). 
17 E. Poznyak and E. Shikin, Jour. Mat. Sci. 74, 1078 (1995). 
18 j. Gemmer and S. Venkataramani, arXiv:1005.4442v2  (2010). 
 
 


