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We carry out ab initio calculations which demonstrate the importance of the non-spin-conserving
part of the spin-orbit interaction for the intrinsic anomalous Hall conductivity of ordered FePt
alloys. The impact of this interaction is strongly reduced if Pt is replaced by the lighter isoelectronic
element Pd. An analysis of the interband transitions responsible for the anomalous velocity reveals
that spin-flip transitions occur not only at avoided band crossings near the Fermi level, but also
between well-separated pairs of bands with similar dispersions. We also predict a strong anisotropy
in the anomalous Hall conductivity of FePt caused entirely by low-frequency spin-flip transitions.

The intrinsic anomalous Hall effect (AHE) [1] and
spin Hall effect (SHE) [2] in solids arise from the op-
posite anomalous velocities experienced by spin-up and
spin-down electrons as they move through the spin-orbit-
coupled bands under an applied electric field. In para-
magnets, where the bands are spin-degenerate, these
counter-propagating transverse currents result in a time-
reversal conserving pure spin current. In ferromagnets,
where the bands are split by the exchange interaction, the
same process generates a net time-odd charge current.

The above picture is intuitively appealing, and often
leads to correct conclusions. However, it leaves out the
fact that in the presence of the spin-orbit interaction
(SOI) the spin projection along the quantization axis is
not a good quantum number. This is a particularly sub-
tle point regarding the SHE, as the proper definition of
the spin current becomes problematic when spin is not a
conserved quantity [3]. More generally, processes which
do not conserve spin (we shall refer to them as spin-flip
processes) are known to play a role in phenomena such as
spin relaxation [4] and magnetocrystalline anisotropy [5].

How does the lack of spin conservation affect the AHE?
To analyze this issue, we begin by noting that the anoma-
lous velocity results from virtual interband transitions,
and that the matrix elements involved are the same which
describe magnetic circular dichroism (see Eq. (1) be-
low). In a perturbative expansion in powers of the spin-
orbit coupling strength, the spin-conserving (spin-non-
conserving) part of the SOI contributes to the dichroic
conductivity at first (second) order [6]. The effect of spin-
flip transitions is therefore expected to be comparatively
small, as confirmed by recent tight-binding calculations
of the anomalous Hall conductivity (AHC) for the 3d
transition metals [7].

It should be kept in mind, however, that in materi-
als containing heavy atoms the SOI cannot be treated as
a small perturbation. Moreover, first-principles calcula-
tions of the AHC [8] have established the crucial role of
near degeneracies across the Fermi level, for which the

above arguments, based on non-degenerate perturbation
theory, do not apply. While the full SOI was included
in previous calculations [1], the specific role of the non-
spin-conserving part was not thoroughly investigated.

In this Letter, we use first-principles calculations to
study the impact of spin-flip transitions on the intrinsic
AHC of FePt orderered alloys [9, 10]. This material has
a number of desirable properties for the present study.
Firstly, the heavy element Pt provides the strong SOI,
which can be ”tuned” by replacing Pt with Pd. Secondly,
previous work has established that in samples with finite
disorder the intrinsic contribution to the AHC is much
larger than the extrinsic one [10]. It is becoming increas-
ingly clear that the AHE in moderately resistive sam-
ples of itinerant ferromagnets such as FePt is often dom-
inated by the intrinsic contribution [1], which at present
is the only one that can be reliably calculated from first-
principles in materials with unknown structural disorder
and impurity content. We shall therefore focus exclu-
sively on the intrinsic part of the AHC, neglecting extrin-
sic contributions such as skew-scattering and side-jump.
We find that the contribution of spin-flip transitions to
the AHC of FePt is considerable, amounting to about
one fifth of the total value. More importantly, the calcu-
lations reveal a clear experimental signature of spin-flip
transitions: as the magnetization is rotated from the uni-
axial direction to the basal plane, their contribution to
the AHC changes sign, leading to a factor-of-two reduc-
tion in the net AHC. In contrast, the spin-conserving part
is almost perfectly isotropic.

We identify two distinct mechanisms for the spin-flip
transitions. The first involves spin-orbit-induced avoided
crossings at the intersections between exchange-split up-
and down-spin Fermi-surface sheets (these intersections
occur along lines in k-space which we shall refer to as hot

loops, in analogy with the hot spots which have been dis-
cussed in connection with spin-relaxation in nonmagnetic
metals [4]). The second mechanism involves spin-orbit
driven transitions between bands with similar dispersion
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σtot σ⇈ σ↑↓ ∆σ⇈ ∆σ↑↓

FePt [001] 818.1 576.6 133.4 −8.5 317.3
[100] 409.5 585.1 −183.9

FePd [001] 135.1 108.4 28.4 −88.5 −33.6
[100] 275.9 196.9 62.0

TABLE I: Values of the AHC in FePt and FePd with the mag-
netization along [001] (σz) and [100] (σx). For each orienta-
tion, σ⇈ (σ↑↓) is calculated by keeping only the first (second)
term in the spin-orbit Hamiltonian (2), while both terms are

kept when calculating of σtot. ∆σ⇈(↑↓) is defined as the differ-
ence between the spin-conserving (spin-flip) parts of σz and
σx. All values are in S/cm.

which are split in energy across the Fermi level. We shall
refer to them as ladder transitions. Both occur at low fre-
quencies, of the order of the spin-orbit coupling strength.

Let us briefly review the formalism for calculating the
intrinsic AHC from first-principles. For a ferromagnet
with the orthorhombic crystal structure and magnetiza-
tion M along the ẑ ([001]) axis, the AHC σz ≡ σxy is
given by the k-space integral of the Berry curvature [1, 8]:

σz =
e2~

4π3
Im

∫

BZ

dk

o,e
∑

n,m

〈ψnk | vx |ψmk〉 〈ψmk | vy |ψnk〉

(εmk − εnk)2
.

(1)
In this expression, ψnk and ψmk are respectively the oc-
cupied (o) and empty (e) one-electron spinor Bloch eigen-
states of the crystal with eigenvalues εnk and εmk, vx and
vy are Cartesian components of the velocity operator,
and the integral is over the Brillouin zone (BZ). When
the direction of M is changed from the ẑ-axis to the x̂-
axis ([100]), the σx ≡ σyz component of the conductivity
tensor should be calculated instead, by replacing vx → vy

and vy → vz in Eq. (1).

The calculations were done using the approach of
Ref. [11], whereby the linear-response expression (1) is
rewritten in the basis of Wannier functions spanning the
occupied and low-lying empty states. In this way the
infinite sums over bands are replaced by sums over the
small number of Wannier-interpolated bands. The Wan-
nier functions were generated with WANNIER90 [12] using
the same parameters as in Ref. [10], by post-processing
first-principles calculations done using the Jülich density-
functional theory FLAPW code FLEUR [13] (see Ref. [14]
for details). The unit cell of FePt and FePd contained
two atoms in the L10 structure, with stacking along
the [001]-direction. We used the generalized gradient
approximation lattice constants of a = 5.14 bohr and
c = 7.15 bohr for FePt, and a = 5.12 bohr and c =
7.15 bohr for FePd.

The atomic spin-orbit term in the Hamiltonian has the
form

ξL · S = ξLn̂Sn̂ + ξ
(

L+

n̂ S−
n̂ + L−

n̂ S+

n̂

)

/2, (2)

FIG. 1: (color online) Cumulative contribution to the AHC of
FePt from the spin-flip (↑↓) and spin-conserving (⇈) dichroic
spectra above energy ω. The values of AHC from Table I are
indicated as open circles. The two insets display Σ↑↓(Ev, Ec),
the energy-energy density of contributions to σ↑↓, for M along
[001] and [100] (in 105 a.u./eV2).

where ξ is the spin-orbit coupling strength, n̂ is the
spin magnetization direction (which is taken as the spin-
quantization axis), L and S are the orbital and spin angu-
lar momentum operators, Ln̂ = L · n̂, and L+

n̂ and L−
n̂ are

the corresponding raising and lowering operators (anal-
ogously for spin). We shall refer to the first and second
terms in Eq. (2) as the spin-conserving (LS⇈) and spin-
flip (LS↑↓) parts of the SOI. This terminology refers to
the effect of acting with each of them on an eigenstate of
Sn̂. Accordingly, we define σ⇈ and σ↑↓ as the AHC cal-
culated from Eq. (1) after selectively removing LS↑↓ or
LS⇈ from Eq. (2). This is not an exact decomposition,
but inspection of Table I shows that it is approximately
valid, as σtot ≈ σ⇈ + σ↑↓.

The importance of spin-flip transitions for the AHC of
FePt can be seen by analyzing its dependence on the mag-
netization direction (Table I). If only the spin-conserving
term in Eq. (2) is kept, the resulting AHC σ⇈ changes by
less than 2% from an average value of about 580 S/cm as
M is tilted from the ẑ-axis to the x̂-axis. When the spin-
flip term is also included, the AHC σtot becomes highly
anisotropic, decreasing by a factor of two, or roughly
400 S/cm, between [001] and [100]. Keeping only the
spin-flip part of the SOI reveals that it is indeed chiefly
responsible for the large anisotropy, as σ↑↓ changes by
more than 300 S/cm, from a positive value along [001] to
a large negative value along [100]. Such significant AHC
anisotropy can occur in uniaxial ferromagnetic crystals,
and was previously found in hcp Co [15]. However, in
hcp Co the anisotropy is caused by spin-conserving pro-
cesses. This is also the case for FePd, as seen in Table I,
and we shall comment further on this point below.

The AHC can be resolved in energy by defining a cu-
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Fetot Fe⇈ Fe↑↓ Pttot Pt⇈ Pt↑↓

[001] −13.7 17.9 −26.8 848.0 541.0 282.3
[100] 210.0 253.6 −37.5 65.0 425.7 −360.6

TABLE II: AHC in FePt for two magnetization directions,
resolved into spin-flip and spin-conserving contributions from
the SOI on each atomic species. All values are in S/cm.

mulative AHC A(ω), which accumulates all transitions in
Eq. (1) for which εmk−εnk > ω [15]. In the limit ω → 0
all interband transitions in Eq. (1) are accounted for, and
therefore A(ω → 0) equals the full intrinsic AHC. The
spin-conserving and spin-flip cumulative AHCs are plot-
ted in Fig. 1 in the range 0 ≤ ω ≤ 12 eV, for both M‖ẑ
and M‖x̂. While A⇈(ω) remains largely isotropic over
the entire energy range and decays rather slowly with ω
up to 4−5 eV in energy, A↑↓(ω) picks up only for ω below
1 eV and immediately becomes strongly anisotropic with
decreasing energy, displaying a characteristic bifurcation
shape [15]. Thus, the anisotropy in the AHC arises from
spin-flip transitions within an energy window of about
0.5 eV around EF .

In order to get further insight into the energy dis-
tribution of the spin-flip transitions, we define a new
quantity Σ↑↓(Ev, Ec) as the contribution to σ↑↓ from
vertical transitions between pairs of states with ener-
gies in the vicinity of Ev < EF and Ec > EF . Thus,
∫∫

Σ↑↓(Ev, Ec)dEvdEc = σ↑↓, and if the region of inte-
gration is restricted to Ec − Ev > ω, we obtain A↑↓(ω).

The function Σ↑↓(Ev, Ec) is shown in the insets of
Fig. 1 for the two magnetization directions. In both cases
one can see intense blue dots near the origin. They denote
large negative contributions concentrated at very low en-
ergies, arising from spin-orbit-induced avoided crossings
between up- and down-spin Fermi-surface sheets. While
for M‖x̂ these hot-loop features are dominant, for M‖ẑ
a competing positive contribution can be clearly seen. It
consists of a series of stripes Ec − Ev ≈ const., with the
constant ranging from 0.1 to 0.5 eV. By analyzing the
band structure we find that, owing to the off-diagonality
of the LS↑↓-operator in the basis of localized d-orbitals,
these transitions come from pairs of bands of differ-
ent orbital character with similar dispersion on either
side of EF . Such ladder transitions, indicated schemati-
cally in the inset of Fig. 2, provide a different source of
AHC. Compared to the hot loops, they do not require
band crossings at the Fermi energy, and occur over wider
ranges of energy and larger regions of k-space. In FePt
with M‖ẑ their contribution is so large that it wins over
the hot-loop part and determines the sign and magnitude
of σ↑↓.

The spin-flip processes in FePt are induced mostly by
the strong SOI on the Pt atoms. In order to prove this
point, we have selectively turned off the SOI on each
atomic species inside the crystal. The atom-resolved

FIG. 2: (color online) Dependence of the total (σtot
z

and σtot
x

)
and spin-flip (σ↑↓

z
and σ↑↓

x
) AHC in FePt alloy on the strength

ξPt of the SOI inside the Pt atoms. The inset depicts schemat-
ically the ”ladder-type” spin-flip interband transitions.

spin-orbit Hamiltonian reads

HSO = ξFeL
Fe · S + ξPtL

Pt · S, (3)

where L
µ is the orbital angular momentum operator as-

sociated with atomic species µ, and ξµ is the spin-orbit
coupling strength averaged over valence d-orbitals. In
FePt we find ξ0Fe = 0.06 eV and ξ0Pt = 0.54 eV, where ξ0µ
denotes the value calculated from first-principles.

We have recalculated the AHC after setting to zero
either ξFe or ξPt in Eq. (3), and then using Eq. (2) to
further decompose the remaining term. The results are
presented in Table II. Although such a decomposition
is not exact, it reproduces the results of Table I rather
well. Namely, the sum of the total conductivities driven
by SOI on Fe (Fetot in Table II) and on Pt (Pttot in Table
II) is in reasonable agreement to the values of σtot from
Table I for both magnetization directions. Moreover, the
decomposition of the total atom-resolved AHCs into spin-
conserving and spin-flip parts is almost exact, as can be
seen from Table II.

Consider first the left part of the Table II, where the
AHC is driven by ξFe. For both magnetization directions
the spin-flip contribution is very small, while the spin-
conserving part is small along [001] but large along [100].
As for the AHC induced by ξPt, shown on the right-side
of the table, the spin-conserving part is large but fairly
isotropic, while the spin-flip part is highly anisotropic,
changing from a large positive value along [001] to a large
negative value along [100]. This confirms that the large
and strongly anisotropic σ↑↓ is governed by the SOI inside
the Pt atoms.
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A large spin-flip contribution to the AHC in materials
with strong spin-orbit coupling is perhaps not surprising,
given that spin-flip transitions appear at second order in
a perturbative treatement of the SOI. This is confirmed
by nonperturbative calculations where we tune by hand
the SOI strength ξPt on the Pt atoms. The results for the
total and spin-flip AHC are shown in Fig. 2 as a function
of ξPt/ξ

0
Pt. It can be seen that for ξPt less than ξ0Pt/2,

the absolute value of the spin-flip AHC does not exceed
a modest value of 50 S/cm. In this regime σtot

z and σtot
x

are dominated by spin-conserving processes. Moreover,
we note that while the decrease in σtot

z is almost perfectly
linear, σtot

x stays fairly constant over a wide region of
ξPt values. This can be understood from the fact that
for M‖ẑ the spin-conserving and spin-flip contributions
arising from ξPt largely cancel one another (see Table II),
so that the total AHC is mostly driven by the SOI on the
Fe atoms. In contrast, for M‖ẑ it is the SOI on the Pt
atoms which dictates the AHC.

The artificial tuning of ξPt performed above describes
rather well what happens if the Pt atoms are replaced
with Pd, to form the experimentally known FePd al-
loy [10]. This can be seen by comparing the values of σtot

and σ↑↓ for FePd in Table I with the values taken from
the shaded area in Fig. 2, where ξPt ≈ ξ0

Pd
= 0.19 eV.

In particular, the sign of the AHC anisotropy in FePd,
which is opposite from that in FePt, is correctly repro-
duced by the scaled calculations on FePt.

In summary, we predict a large contribution from spin-
flip transitions to the intrinsic AHE of FePt ordered al-
loys. Such transitions are induced by the strong spin-
orbit interaction on the Pt atoms. They are concentrated
at frequencies below the spin-orbit interaction energy,
and their sign depends on the magnetization direction,
making the AHE in this material strongly anisotropic.
Our calculations have assumed perfectly ordereded al-
loys, therefore neglecting extrinsic contributions to the
AHC. First-principles methods capable of incorporating
the effects of disorder in the calculation of the AHC have
been recently developed [16-18]. An interesting direc-
tion for future work would be to use such methods to
investigate both the role of spin-flip transitions and the

orientation dependence of the extrinsic AHE.
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