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We perform numerical studies to determine if the fractional quantum Hall state observed at filling
ν = 5/2 is the Moore-Read wavefunction or its particle hole conjugate, the so-called AntiPfaffian.
Using a truncated Hilbert space approach we find that for realistic interactions, including Landau-
level mixing, the ground state remains fully polarized and the AntiPfaffian is strongly favored.

Over the last twenty years one of the most intriguing
puzzles in condensed matter physics has been the nature
of an “even denominator” quantum Hall state observed[1]
at filling fraction ν = 5/2. Shortly after its discovery it
was shown[2] that the 5/2 plateau disappears when a suf-
ficiently strong in-plane magnetic field is applied to the
2-D electron layer. This observation was widely assumed
to indicate a spin-singlet (or partially polarized) ground
state, since increasing the in-plane field would force the
spins to align and destroy such a ground state. However,
numerical results by Morf[3] showed that in a relatively
large finite size system, the polarized state is preferred
over spin-singlets even in the absence of the Zeeman gap.
There is now agreement among numerical calculations[3–
5], using a variety of techniques and in different geome-
tries, that the polarized ground state is adiabatically con-
nected to a gapped phase, generally believed to be the
Moore-Read[6] Pfaffian (Pf) state, but lies very close to
a quantum phase transition to a compressible phase so
that small changes in details, such as tilting the magnetic
field, can push the system across the phase boundary as
had been observed experimentally. Despite this conver-
gence of views there remains a serious complication in
comparing the Pfaffian state to the ground states found
in numerical studies: It was recently realized[7] that the
particle-hole conjugate of the Moore-Read Pfaffian state,
called the AntiPfaffian (APf), is an equally valid can-
didate for systems which obey particle-hole symmetry;
and no prior numerical study would have had the ability
to distinguish between these two possibilities[8]. On the
other hand, the actual experiments do not obey particle-
hole symmetry and so the two candidates are inequiva-
lent in experiments and, most likely, only one is realized.
While the Pfaffian and the AntiPfaffian share many im-
portant properties, including non-Abelian statistics and
their usefulness for quantum information processing[9],
they represent different topological phases of matter. For
example, they have different edge physics[7]. Determin-
ing which of these two states is actually realized in the
physical system is now a rather crucial objective. This is
the aim of the current paper.

In all previous numerical studies, calculations were per-
formed in a Hilbert space restricted to a single Landau
level (LL). Indeed, it is precisely this restriction that al-

lows numerical calculations in systems of relatively large
sizes (up to 22 electrons in some cases[5]). However, if
the inter-particle interaction is two-body, such a restric-
tion enforces a precise symmetry between particles and
holes that is absent in the actual experiments, and this
symmetry is broken once LL mixing is restored. While
for most studies mixing makes only quantitative (albeit
important) corrections, in the case of 5/2 it is crucial
since it is the only factor that selects between Pfaffian
and AntiPfaffian. Without consideration of LL mixing,
the system is fine-tuned to a critical point between these
phases[10]. Furthermore, single LL projection can only
ever be quantitatively accurate to the extent that the
Coulomb energy Ec = e2/ǫℓ0 is much smaller than the
cyclotron energy ~ωc. Unfortunately, in actual quantum
Hall experiments this is never so. In fact Ec/~ωc & 1 in
all published experiments on 5/2. In the current paper
we will set Ec/~ωc = 1.38 as in Ref. 11.

The challenge of attacking this problem numerically is
that without the projection to a single LL, the Hilbert
space, even for a small system, is infinite. One approach
to addressing this problem is to integrate out LL mix-
ing terms perturbatively in Ec/~ωc, leaving an effective
single LL theory. This approach has recently been imple-
mented to lowest order in Ref. 13. The single LL theory
has been obtained, and it was tentatively concluded that
at lowest order the LL mixing terms most likely favor An-
tiPfaffian over Pfaffian. While such an approach is well
controlled, it also has obvious severe limitations: it is a
perturbative expansion in a parameter which in the ex-
periment is of order one. While in principle one could at-
tempt to continue the expansion to higher orders hoping
that the series converges quickly, even if one could per-
form the more complicated algebra, at higher orders one
generates retarded interaction terms which then makes
the resulting single LL analysis very difficult.

An alternate, seminumerical, organization of a pertur-
bative expansion in LL mixing terms was developed in
Ref. 12. We attempted a similar approach, hoping that
terms of successively higher orders in Ec/~ωc would be-
come rapidly less important. However, for Ec/~ωc & 1
corresponding to the experiments, we found that one
would have to carry out this expansion to a higher order
than feasible in order to obtain convergence. We have,
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therefore, resorted to a different method of analysis.

The approach we take is non-perturbative and is simi-
lar in spirit to that of Ref. 14. We use a truncated Hilbert
space method by keeping a limited number of LLs and
allowing only a certain number of particle or hole exci-
tations out of the valence LL, and performing exact di-
agonalizations on this restricted Hilbert space. One may
view such an approach as variational in character, which
can successively be improved by further expanding the
Hilbert space. We note that matrix elements connect-
ing the valence LL to increasingly high LLs drop very
rapidly, so excluding high LLs is not expected to create
substantial errors (see for example [12]).

Even given the Hilbert space truncation, it is still chal-
lenging to establish meaningful results from the limited
size system. As such, our argument will proceed in three
steps. (1) We show that the valence LL is polarized. This
result was first established without LL mixing in Ref. [3],
and is re-examined here for completeness as well as for
ascertaining that LL mixing does not change this conclu-
sion. This then allows us to concentrate on systems with
a polarized valence LL. (2) We establish that excitations
of electrons with opposite spin from that of the valence
LL do not substantially effect the crucial physics. This
allows us to further reduce the Hilbert space dimension
considerably. (3) Finally, using our truncation method
we can meaningfully address adequate system sizes and
accurately determine the nature of the ground state.

We perform our calculations on the torus geometry
at ν = 5/2 where the Pfaffian and AntiPfaffian com-
pete with each other directly (as compared to the sphere
where, for a particular number of particles, the Pfaffian
and AntiPfaffian do not occur at the same flux). Un-
less otherwise stated we will use a hexagonal unit cell.
Following Haldane[15], we use two-dimensional conserved
crystal momentum to classify the states. We consider two
different classes of experimental samples where ν = 5/2
has been observed. The first class, typical of earlier
experiments[1, 2], include single heterointerfaces. In the
current work we will focus on samples of this type using a
Fang-Howard (FH) layer profile[16], with a layer width of
w = 0.65 magnetic lengths[11]. The second class of sam-
ples is the somewhat wider (roughly 30 nm) symmetric
quantum well (QW) typical of modern high-density ultra-
high mobility experiments[17]. In this case, the LLL of
the first excited subband may lie below the 2 ↓ LL of the
lowest subband and hence should not be ignored[18]. We
will return to the QW case before concluding.

Some of the Hilbert spaces which we examine are listed
in Table I. The simplest of the Hilbert spaces are Hp,N

which describe N electrons filling half of the 1st spin
down LL (where all other LLs are either completely filled
or completely empty). This type of space, where all of
the degrees of freedom are within one spin polarized LL,
is typically the space used for study of the quantum Hall
effect. Indeed, the trial wavefunctions we are interested

(a) Nφ N 0↓+0↑ 1↓+1↑ 2↓+2↑ 3↓+3↑ d

Hv,6 12 30 24\ 6 0\ 0\ 6.7e2
Hv,8 16 40 32\ 8 0\ 0\ 2.6e4
Hv,10 20 50 40\ 10 0\ 0\ 1.2e6
Hs,1 12 30 22-24 6-8 0\ 0\ 7.6e4
Hs,2 12 30 23-24 5-7 0-1 0\ 2.5e4
Hs,3 12 30 22-24 5-8 0-1 0\ 1.1e6
Hs,4 12 30 22-24 4-8 0-2 0\ 6.0e6
Hs,11 16 40 31-32 7-9 0-1 0\ 4.5e5
Hs,12 16 40 30-32 7-10 0-1 0\ 3.3e7

(b) Nφ N 0↓ 1↓ 2↓ 3↓ d Pf APf 〈P|A〉2

Hp,6 12 30 12\ 6 0\ 0\ 1.4e1 .90 .90 .67
Hp,8 16 40 12\ 8 0\ 0\ 1.0e2 .53 .53 .016
Hp,10 20 50 12\ 10 0\ 0\ 9.2e2 .71 .71 .29
Hp,12 24 60 12\ 12 0\ 0\ 9.4e3 .56 .56 .059
Hr,1 12 30 10-12 6-8 0\ 0\ 6.0e2 .94 .83 .67
Hr,2 12 30 11-12 5-7 0-1 0\ 2.1e3 .79 .87 .67
Hr,3 12 30 10-12 5-8 0-1 0\ 1.1e4 .80 .89 .67
Hr,4 12 30 10-12 4-8 0-2 0\ 7.6e4 .83 .89 .67
Hr,5 12 30 9-12 3-9 0-3 0\ 1.1e6 .82 .89 .67
Hr,6 12 30 8-12 2-10 0-4 0\ 7.1e6 .82 .89 .67
Hr,7 12 30 10-12 4-8 0-2 0-1 8.7e5 .81 .87 .67
Hr,8 12 30 10-12 4-8 0-1 0-2 8.7e5 .79 .86 .67
Hr,9 12 30 9-13 3-9 0-2 0-1 3.7e6 .82 .87 .67
Hr,10 16 40 14-16 8-10 0\ 0\ 9.1e3 .63 .33 .016
Hr,11 16 40 14-15 7-9 0-1 0\ 2.9e4 .36 .52 .016
Hr,12 16 40 14-16 7-10 0-1 0\ 2.1e5 .34 .51 .016
Hr,13 16 40 14-16 6-10 0-2 0\ 1.8e6 .37 .56 .016
Hr,14 16 40 14-16 6-10 0-1 0-1 3.9e6 .36 .53 .016
Hr,15 20 50 18-20 10-12 0\ 0\ 1.4e5 .40 .00 .29
Hr,16 20 50 18-20 9-12 0-1 0\ 3.8e6 .01 .24 .29

TABLE I. Hilbert Spaces. Nφ is the flux and N = (5/2)Nφ

is the total number of electrons. The next columns are the
number of electrons allowed in each LL respectively (labelled
with their spin). Entries with a slash through them are either
empty or filled and frozen. Higher LLs are assumed empty.
The dimensions of crystal momentum reduced Hilbert spaces,
rounded to the nearest power of 10, are listed under “d”. In
(b) the LLL up spins are frozen and other up spin LL are
empty. Columns 8 and 9 give the squared overlaps of the
projected ground state with the Pfaffian and the AntiPfaf-
fian respectively. The overlap between them is given in the
last column. With sufficient LL mixing (i.e., any transitions
allowed to LL2) in all cases the AntiPfaffian is favored. All
overlaps increase as V1 is increased slightly (see Figs 1, 2).

in comparing to, the Pfaffian and the AntiPfaffian, are
completely contained within this space. It is useful to
define a normalized projection operator

P̂p,N |ψ〉 = Pp,N |ψ〉 / |〈ψ|Pp,N |ψ〉|1/2 (1)

where Pp,N is the usual projection to the Hilbert space

Hp,N . Thus, P̂p,N |ψ〉 is always a normalized wave-
function within the space Hp,N . We can further de-
fine the projected square overlap between two states ψ1

and ψ2 with the same total number of electrons N as
|〈ψ1|P̂p,N P̂p,N |ψ2〉|2 where N = N mod Nφ = N/5.

We start by examining spin polarization of the valence
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LL. First we restrict the Hilbert space to a single LL (Hv,i

for i = 6 − 10) and, before doing exact diagonalization,
we integrate out inter-LL transitions approximately at
the RPA level[19], which modifies the inter-electron in-
teractions. We find, in agreement with Ref. 3, that even
in the absence of Zeeman energy, the ground state of the
valence LL is fully polarized and gapped for N = 6 − 10
electrons. Furthermore the signature crystal momentum
of the Pfaffian state (and the AntiPfaffian) for both even
and odd electrons is matched by the exact ground state.
We find these results to be true for both FH and QW
layer profiles

We reconsider the same problem including LL mixing
with the truncated Hilbert space technique. Performing
diagonalizations in Hilbert spaces Hs,i we now allow com-
plete freedom within the valence LL, and we also allow
a few holes in the 0th LL and a few electrons in the 2nd
LL. We again find that the ground state of the valence
LL is always fully polarized even in the absence of Zee-
man splitting and the ground state momentum matches
that of the Pfaffian and AntiPfaffian.

Concluding that the valence LL is polarized, we now
turn to study the effect of the excitation of the spin up
(the minority spin) electrons. Let us consider the ground
states Hr,i, which are exactly analogous to Hs,i except
that the minority spin species have now been frozen (we
do not allow any excitations of this species) although LL
transitions for the majority spin are still allowed. We
find, rather remarkably, that the projected squared over-
lap between the ground state in Hr,i and the ground state
in Hs,i is .9893, .9984, and .9986 for i =2,3,4. This sur-
prisingly shows that as the Hilbert space is expanded (for
fixed number of electrons), the minority spin species be-
comes less important. For i = 11,12 we obtain .9864 and
0.9966 which shows that even for larger system, neglect of
spin-reversed excitations remains extremely good. Con-
sidering the large Hilbert space and its moderate size
even after projection to Hp,8 (34 after all symmetries
are removed) this result is highly significant. What this
means is that, although the ground state wavefunction is
dressed with virtual excitations to the other LLs, when
it is projected back into a single LL, the wavefunction is

nearly independent of whether transitions of the minority

spin species are allowed. We note that this insensitivity
to the presence of the minority spins seems to hold in-
dependent of our truncation scheme and details of the
Hamiltonian, presumably, so long as we have a polarized
and gapped ground state. The fraction of the wavefunc-
tion that survives projection is clearly reduced when the
Hilbert space is expanded, but this is unimportant in
determining the phase represented by the wavefunction.

The above result now allows us to completely freeze
the minority spin species and study larger systems. We
examined a number of different truncation combinations,
some of which are shown in Table I.b. We find that
as the Hilbert space is expanded, the spectrum rapidly

converges. Indicating that only a few excitations out of
the valence LL need be considered in order to capture
the essential physics

We now turn to the main results of our work. For in-
creasing system sizes, we consider the projected overlap
of our exact diagonalizations with both the Pfaffian and
the AntiPfaffian (see Table I.b). Note that for certain
finite sized systems, there can be a substantial overlap
between the Pfaffian and AntiPfaffian (see Table I.b),
so that if the overlap of the ground state with one is
large, the overlap with the other cannot be too small.
Examining Table I.b, it is clear that the AntiPfaffian
is favored over the Pfaffian, particularly for the larger
Hilbert spaces. We find that the AntiPfaffian always has
higher overlap except if transitions to LL2 are artificially
forbidden (Hr,i for i = 1, 11, 14). As we look at larger
systems, the contrast between Pfaffian and AntiPfaffian
only improves. We have presented only a subset of our
data, but the trends are not contradicted by any other
cases we have looked at.

Examining the data more carefully makes the case even
more compelling. For finite sized systems, the realis-
tic Hamiltonian is clearly on the edge of a phase tran-
sition, in agreement with experiment[2] and prior nu-
merical studies[3–5]. However, barring a level crossing
transition, which does not occur here, phase boundaries
are broadened in finite sized systems. In order to focus
on the gapped phase, we add a small δV1 (Haldane pseu-
dopotential) interaction to the Hamiltonian. We define
Vm to be the the energy of a pair of particles in a state
of “relative angular momentum” m irrespective of what
LL they occupy[15]. Defined this way, such a term does
not break particle-hole symmetry. In Fig. 1, in a system
with a very large Hilbert space, we see that adding only
a small δV1 greatly increases the projected overlap of the
ground state with the AntiPfaffian trial state, but to a
much lesser degree with the Pfaffian. Since for this size
system, the overlap of the Pfaffian and AntiPfaffian is
about 29%, much of the increase for the Pfaffian appears
to be caused by this effect.

It is useful to examine also the torus with square unit
cell geometry where additional information may be ex-
tracted (See Fig. 2). In contrast to the hexagonal unit
cell, where there is a single three-fold degenerate ground
state, for the square unit cell we find two low energy
“ground” states at two different points in the Brillouin
zone: one at the zone corner (ZC) and a doubly degen-
erate ground state at the zone boundary (ZB), as ex-
pected for either the Pfaffian or AntiPfaffian. In this
case, however, the overlap between the Pfaffian and An-
tiPfaffian trial wavefunctions are 0.8% for ZC and 12%
for ZB. Here, the contrast between Pfaffian and AntiP-
faffian overlaps is even more apparent: examining the ZC
we find a region of δV1 where the overlap with the An-
tiPfaffian is very high, but the overlap with the Pfaffian
is near zero. At the peaks in both figures, the AntiPfaf-
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FIG. 1. (color online) The overlaps of the projected ground
state with the MR Pfaffian and the AntiPfaffian for Hr,15,
(Nφ, N) = (20, 50). Varying V1 slightly, the projected ground
state obtains a large overlap with the APf, while the overlap
with the Pf remains relatively small. A substantial part of the
Pf overlap appears to be caused by the non-orthogonality of
Pf with APf. Further increasing V1, the system crosses over
to a Composite Fermion (CF) Fermi-liquid[4], which in this
case has the same crystal momentum. The top curve (also in
Fig. 2 for the ZB case) is the projection of the ground state
to the two-dimensional subspace spanned by the Pf and APf.

fian completely dominates while past the peaks both are
present with the AntiPfaffian remianing dominant. How-
ever, such an admixture of Pf and APf will not occur in
a thermodynamic system since they represent distinct
phases.

We return now to the QW type samples. In the high
density (very high mobility) cases, the LLL of the first ex-
cited subband state is about 30% of ~ωc above the n = 1
LL. We find that in a 3-LL model the mixing is somewhat
suppressed and the Pfaffian is preffered. However, adding
the fourth (n = 2 lowest subband) LL changes it to the
AntiPfaffian. We have tested convergence when more
LLs are added. In particular, adding the fifth (n = 1, first
excited subband) LL in a small, N = 30 and Nφ = 12,
system we have found that overlap changes are less than
one quarter of a percent. While the sizes we can access in
this case are more limited, the case for the AntiPfaffian
remains relatively strong.

To conclude, we find the AntiPfaffian is strongly pre-
ferred. The large overlaps with the Pfaffian appear to be
a finite size effect at least partially due to the relatively
large overlap of the Pfaffian with the AntiPfaffian.
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