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The Green-Kubo equation relates the macroscopic stress-stress correlation function to a liquid’s
viscosity. The concept of the atomic level stresses allows the macroscopic stress-stress correlation
function in the equation to be expressed in terms of the space/time correlations among the atomic
level stresses. Molecular dynamics studies show surprisingly long spatial extension of stress-stress
correlations and also longitudinal and transverse waves propagating in liquids over ranges which
could exceed the system size. The results reveal that the range of propagation of shear waves
corresponds to the range of distances relevant for viscosity. Thus our results show that viscosity
is a fundamentally non-local quantity. We also show that the periodic boundary conditions play a
non-trivial role in molecular dynamics simulations, effectively masking long range nature of viscosity.

PACS numbers: 61.20.-p, 61.20.Ja, 61.43.Fs, 64.70.Pf

Computer simulations of supercooled liquids revealed
a number of phenomena that happen at a microscopic
level. These include atomic caging, string-like atomic
motion, dynamically heterogeneous behavior, and multi-
ple subtle features related to the sampling of potential
energy landscape [1]. The nature of the relation between
these microscopic phenomena and macroscopic proper-
ties, such as viscosity, is not completely understood. Here
we address the connection between the local atomic dy-
namics and macroscopic viscosity using the concept of
the atomic level stresses [2–8].

One common approach to viscosity calculations in MD
simulations is based on the Green-Kubo expression [9–
11]:
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where < ... > indicates averaging over the initial time
to of the autocorrelation function for off-diagonal com-
ponents of the macroscopic stress tensor σab. The total
volume of the system is V while kb and T are the Boltz-
mann constant and temperature. The macroscopic stress
in (1), is a sum of contributions from individual atoms:
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where the summation over i is over the all atoms in the
system, while the summation over j is over the atoms

with which atom i interacts via pair potential φ. In (2)
we neglected the kinetic energy contribution.

Contributions from individual atoms sab
i are closely re-

lated to the local atomic stresses σab
i = sab

i /Vi, where Vi

is the atomic volume of the atom i [6–8]. Here, for con-
venience, we will refer to the parameters sab

i as the local
atomic stress elements.

It follows from (1,2) that for a single component sys-
tem:
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where ρo is the atomic number density. The averaging
< ... > in (3) and hereafter is over the all atoms i and
over the initial time to. The first term on the right is
the autocorrelation function for the atomic level stress
elements. The second term contains correlations between
atomic level stress elements on different atoms.

Previously it was demonstrated that correlation func-
tion (3) at zero time extends over large ranges and that
the range of distances relevant to viscosity is large [3–
5]. Here we demonstrate that propagating stress waves
could be observed through this approach and that stress
waves play very important role in formations of viscos-
ity making it a very non-local quantity. We also reveal
non-trivial role of periodic boundary conditions.

In our approach we define a correlation function (sscf )
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between the stress element at atom i with the stress ele-
ments at a subset of atoms j, which are separated from
the atom i by r ∓∆r/2 as:

F (r, t)∆r ≡
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where J∆r(i, r, to) is the set of all atoms that were within
the shell of radius r and thickness ∆r from the position
of atom i at time to. The number of such atoms within
a thin shell of radius r is proportional to r2∆r. The
averaging goes over i and to. Note that F (r = 0, t) is the
autocorrelation function.

Finally we introduce the concept of microscopic viscos-
ity:

η(Rmax, tmax)≡ ρo

kbT
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F (r, t)∆rdt .(5)

This quantity should extrapolate to the macroscopic vis-
cosity in the limit of Rmax → ∞ and t → ∞, and thus
address the ranges of correlations in space and time that
affect viscosity.

To examine the behavior of the microscopic viscosity
and its convergence to the macroscopic value, molecular
dynamics (MD) simulations were performed on a single
component system of particles that is supposed to mimic
liquid iron. The number density of the system corre-
sponded to a bcc lattice with lattice spacing a = 2.943Å.
The particles interact through a short range pairwise po-
tential. The potential has a minimum at 2.61Å with the
depth ≈ 2800 K and it is zero beyond 3.44Å. This poten-
tial is more harmonic than the Lennard-Jones potential,
but these potentials share very similar thermal behaviors
of atomic level stresses at high temperatures [8]. Thus
we surmise that results obtained using this potential are
rather general. The melting temperature of this system
is around 2400 K, while the glass transition temperature
is around 1000 K [12].

In calculating (3) for every atom i, every atom j should
be counted only once. For instance, if the simulations are
performed on a cubic system (L × L × L) with periodic
boundary conditions and if the radius of the shell r in (4)
belongs to the interval (L/2) < r <

√
3(L/2), according

to (3), we should count only the atoms in parts of the
shell under the “corners” of the cube. Thus, we should
count every atom j only once without introducing extra
images of the system. Consequently, sscf (4) approaches
zero as r approaches

√
3(L/2) since the number of atoms

j that we should count goes to zero. Thus, size effects in
sscf may appear if it does not decay quickly with increase
of r.

In order to assess the size effects, we studied cu-
bic systems containing 1458, 5488 and 43904 particles
(small, intermediate and large) with periodic boundary
conditions. The half lengths of their sizes, (L/2), are

∼ 13.25Å, ∼ 20.60Å, and ∼ 41.21Å . In order to evalu-
ate macroscopic viscosity we integrated total shear stress
correlation functions according to (1) for the systems of
different sizes up to the time tmax = 2000 (fs), where
stress correlations decay to zero. Results from different
stress components and from several runs were used to
find the average values and the errors. The obtained
values of the macroscopic viscosities for different sys-
tems at 2,000 (K) are: η(13.25Å) = 0.01084 ± 0.00012
(kg/(s·m)), η(20.60Å) = 0.01055 ± 0.00017 (kg/(s·m)),
η(41.21Å) = 0.01097±0.00115 (kg/(s·m)). Thus the val-
ues for macroscopic viscosities for all systems are very
similar. Our results are consistent with other reports
[9, 11] suggesting the absence of significant size effects
in viscosity calculations. The similarities in values of
macroscopic viscosities obtained on systems of different
sizes may appear to suggest that viscosity is a relatively
local quantity. However, some previous results indicate
that viscosity is, in fact, very non-local [3, 13]. Here we
further address this issue.

Figure 1 shows the 2D plots of sscf (4) at tempera-
ture 2,000 K for the small and large systems. There were
six independent runs to produce the data for the system
containing 43904 particles. In every run the averaging
was done over every atom in 40 initial structures sepa-
rated from each other by 100 femtoseconds. This cor-
respond to averaging over more than 10 millions central
atoms. Averaging over different stress components was
also employed. The value of the stress autocorrelation
function at time zero is 5.5 (eV 2). Overall the value
of the signal that we observe at large r is rather small
compare to the size of fluctuations. For the large sys-
tem we stopped calculations at 30Å because calculations
consume significant computer time and memory for large
distances. However, for the smaller systems calculations
are less time consuming and we performed calculations
up to the distances where all particles were included.

Figure 1 demonstrates that spatial ranges of stress
correlations extend beyond 10 interatomic distances in
agreement with [13]. The interchanging horizontal re-
gions of positive and negative intensity should be related
to the oscillatory behavior of the pair density function
(PDF ). Two bright lines with slopes corresponding to
≈ 6 km/s and ≈ 3 km/s should be caused by longitudi-
nal and transverse stress waves. The stress waves prop-
agate in the large system beyond 30Å, but disappear in
the small system around 20Å. Thus periodic boundary
conditions affect propagation of stress waves. It follows
from Fig. 1 that every atom in the system is a source of
stress waves at every instant. Since stress waves propa-
gate over significant distances it follows that stress waves
from different atoms can propagate through each other.
It also means that the stress on every atom is affected by
all the stress waves that pass/passed through the atom.

Further we address the connection between the
sscf and viscosity. Figure 2 shows how the microscopic
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FIG. 1. The stress-stress correlation function F (r, t) (eq. 4)
at 2,000 K for (L/2) = 13.25Å (upper panel) and (L/2) =
41.21Å (lower panel), ∆r = 0.2Å. The color corresponds to
the amplitude of sscf function.

viscosity η(Rmax, tmax) depends on Rmax for a few differ-
ent integral cutoffs tmax for the systems of three different
sizes. Panels A − E present results for 2,000 (K), while
F for 10,000 (K). The value of the microscopic viscosity
at Rmax = 0 is associated with the stress autocorrelation
function (j = i). Then the value increases with the inclu-
sion of the first coordination shell. Panels A−E show the
evolution of the sscf with tmax. It follows from the figure
that contributions to viscosity from autocorrelation and
cross terms in (3) are comparable for all tmax. Note that
for every tmax the range of distances relevant for viscos-
ity corresponds to the range that shear wave propagate
in that time. Comparison with Fig. 1 reveals that, for
the large system and times less than 800 (fs), crossing
the front of the shear stress wave has major effects on
microscopic viscosity, while changes are slow and small
before and after the wave. Longitudinal wave also does

FIG. 2. Microscopic viscosities for the systems of different
sizes as a function of Rmax for some values of tmax. Panels
A−E are for 2,000 (K), while F is for 10,000 (K). The vertical
dashed lines in panels A−D mark the range that shear wave
propagate in that time. The blue, black and red curves show
results for the small, intermediate and large systems corre-
spondingly. The middle of the green bands in the 2000 (fs)
panels represents the values of the macroscopic viscosities for
the large system. Their widths give the errors.

not seem to affect microscopic viscosity.
Panels C − E show explicitly show that viscosity is a

very non-local quantity. It would be local if the size-
independent behavior in panels A,B for small cutoff
times would held for all cutoff times. However, the re-
sults show distinct size effects on the microscopic vis-
cosity. For the large times the front of the shear wave
can not be crossed because of the small size of the sys-
tem. Thus, microscopic viscosity starts to increase at
some other distance. As the number of included atoms
j approaches the total number of atoms in the system,
the microscopic viscosity saturates to the values of the
macroscopic viscosities. For the large system this corre-
spond to the centers of the green bands in E,F . The
widths of the green bands give the standard deviations
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FIG. 3. The role of the periodic boundary conditions to ef-
fectively return stress waves that leave the box back into the
box.

of the macroscopic value σ.
For the small and intermediate size systems the satu-

rated values of microscopic viscosities are very close to
the corresponding macroscopic values and to the values
of the macroscopic viscosities for the large system. By
definition, the microscopic viscosity for the largest sys-
tem also should saturate to the value of the macroscopic
viscosity as all particles become included.

The present results expose a puzzle: i.e. why macro-
scopic viscosities are similar while microscopic viscosities
show size dependence. A solution may lie in the nature of
stresses, stress waves, and periodic boundary conditions.
Consider the wave that starts from the atom i and that
would reach the atom j′ at time t in an infinite system.
Because of the periodic boundary conditions, this wave
reaches the atom j inside the box instead, as shown in
Fig. 3. Let us assume that different stress waves con-
tribute additively to the stresses on the atoms. Then
periodic boundary conditions effectively transfer contri-
butions of the wave to the stresses from j′ onto j. Thus,
the wave that arrives at the atom j has the same effect on
the macroscopic stress correlation function (3) as would
the wave that would arrive at j′ in an infinite system.
Thus macroscopic stress correlation function and corre-
spondingly macroscopic viscositites obtained on any fi-
nite size system may appear to be similar to the results
that could be obtained on an infinite size system.

Thus, in our view, the long-range nature of viscosity is
obscured by the non-trivial role that periodic boundary
conditions play in MD simulations. The apparent lack of
size effect in the macroscopic viscosity does not indicate
the local nature of viscosity, and in reality viscosity is a
highly non-local quantity.

In view of our conclusion on the non-local nature of
viscosity it is interesting to estimate the range of dis-
tances which are relevant for viscosity. This estimate
could be obtained if the results for the microscopic as well
as macroscopic viscosities on systems of different sizes be-
come the same. Panel F shows the results at 10,000 K.
Here the results for the intermediate and large systems
agree, not only in the saturation value but in the entire

dependence on Rmax. Only the small system shows the
size effect due to the boundaries. Thus at this tempera-
ture both the macroscopic viscosity shown by the green
stripes and the microscopic viscosity become independent
of size for systems with L larger than 20Å, a surprisingly
long range for such a high temperature.

Thus, one can expect that in the liquid at low temper-
ature the range of distances relevant for viscosity is even
longer. Such a long correlation length and the non-local
nature of viscosity is indeed consistent with literature [2–
5, 9–11, 13–19]. Here, however, we revealed a number of
details which, in our view, were not discussed previously
and are important.

In summary, we studied the microscopic nature of vis-
cosity in a liquid. Our results demonstrate that viscosity
is a fundamentally non-local quantity and illustrate how
the propagation of stress waves is related to formation of
viscosity. Our results also show that periodic boundary
conditions play a rather non-trivial role in MD simula-
tions. The results raise multiple questions concerning the
nature of viscosity and stress wave propagation in liquids.
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