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2 Avenue Augustin Fresnel, 91127 Palaiseau Cedex, France

Nontrivial symmetry of order parameters is crucial in some of the most interesting quantum many-
body states of ultracold atoms as well as condensed matter systems. Examples in cold atoms include
p-wave Feshbach molecules and d-wave paired states of fermions that could be realized in optical
lattices in the Hubbard regime. Identifying these states in experiments requires measurements of the
relative phase of different components of the entangled pair wavefunction. We propose and discuss
two schemes for such phase sensitive measurements, based on two-particle interference revealed
in atom-atom or atomic density correlations. Our schemes can also be used for relative phase
measurements for non-trivial particle-hole order parameters, such as d-density wave order.

The concept of order parameter, which charac-
terizes states with spontaneously broken symmetries,
has been successfully applied to a wide range of
physical phenomena such as the Higgs mechanism
in high energy physics[1], superfluidity in neutron
stars[2], superconductivity[3], gaseous Bose-Einstein
condensates[4] and charge and spin ordering in electron
systems[5]. Recent works on condensed matter systems
emphasized that order parameters can often be char-
acterized by non-trivial orbital symmetries. For exam-
ple, in contrast to conventional superconductors, which
have isotropic s-wave electron pairing, high Tc cuprates
exhibit d-wave pairings[6], while superfluidity of 3He
or superconductivity in Sr2RuO4 exhibit triplet p-wave
pairings[7]. Other examples of order parameters with
non-trivial orbital symmetries discussed in the literature
are high angular momentum Pomeranchuk instabilities
of electron systems[8] and unconventional charge and
spin density wave states[9]. Despite of the interests of
such exotic states, the experimental verifications of these
states are yet a challenging problem. Only phase sensi-
tive experiments, such as the observations of Josephson
effects in corner SQUID junctions[10] and π-ring tricrys-
tal experiments[11], have been considered as the defini-
tive proof of the unconventional pairing for both cuprates
and ruthenates[12].

During the last few years, a considerable progress
has been achieved in creating analogues of strongly-
correlated electron systems, using ultracold atoms in op-
tical lattices (see refs. [13] for reviews). One of the most
challenging problems, which could be addressed in the fu-
ture experiments, is the search for d-wave pairing in the
repulsive Hubbard model[14]. Realizations of other ex-
otic states in cold-atom systems, such as d-density wave
states[15], have been theoretically proposed. These states
are characterized by order parameters with non-trivial
angular dependence of the relative phase between the
components of the entangled wavefunction. Hence, it
is important to understand how tools of atomic physics

can be used to perform tests of such quantum many-body
states of ultracold atoms[16].

In this paper, we discuss a scheme for performing such
phase sensitive measurements. It is based on the analy-
sis of atom-atom correlations resulting from two-particle
interference[17]. Our proposal builds on the theoretical
ideas[18] of using noise-correlations in atomic density to
characterize many-body states, and on the experimental
demonstration of measurements of atom-atom correla-
tions, or of atomic density noise spectroscopy with ultra-
cold atoms[19–22]. This method should provide an un-
ambiguous evidence for non-trivial pairings, including p-
and d-wave[14, 23, 24], as well as for non-trivial particle-
hole correlations such as in a d-density wave state[9, 15].
It should also allow the direct observation of two particle
coherence and nontrivial angular momentum of ultracold
diatomic molecules[24, 25].

We first consider a Feshbach molecule that consists of
a pair of atoms, with zero center of mass momentum

|Ψmol〉 =

∫

d3
k

(2π)3/2
ψ(k) c†k↑c

†
−k↓ |0〉. (1)

The two atoms making up the molecule can be either
bosons or fermions. For concreteness, in this paper we
focus on the case of two fermions in different hyperfine
states labeled by σ =↑↓, in analogy with states of a spin
1/2 particle. Here ψ(k) is the wavefunction of a molecule,

c†kσ is a creation operator of a fermion atom in the state
with momentum k and hyperfine state σ. The symme-
try of ψ(k) determines the nature of the paired state.
We assume that the potential binding the two atoms
is removed instantaneously and the released atoms sub-
sequently evolve as free particles. Experimentally this
can be achieved either by changing the magnetic field
abruptly near a Feshbach resonance or by applying an
RF pulse[21, 25]. The released pair of atoms is in a su-
perposition of opposite momenta states |k,−k〉 with am-
plitudes ψ(k). Our goal is to find a method to measure
the relative phases between ψ(k) for different k.
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FIG. 1: Using two-atom interference to measure the relative
phase between different components of molecules after disso-
ciation. a) Scheme I: Free propagating atoms are reflected
in mirrors and mixed in beam splitters denoted by S. Coinci-
dences are counted between detectors on opposite sides, e.g.

D1 and D3. b) Bragg pulses (π or π/2) with wave-vectors
G = p − q and −G are used to exchange (mirrors) or mix
(beam splitters) components q ↑ and p ↑, as well as −q ↓ and
−p ↓(|q| = |p|). Scheme II is realized by applying a single
π/2 pulse at the beginning of the expansion

Scheme I. We first explain the main idea through
the scheme of Fig.1a, analogous to the quantum optics
scheme of [26]. Atomic mirrors and beam splitters are
used to reflect and mix states with momenta p and q

on one side, -p and -q on the other side. Time and
space resolved detectors in opposite sides (e.g. D1 and
D3) allow measurements of correlations resulting from
the interference between ψ(p) and ψ(q), and thus, can
reveal the relative phase between these components. As
shown on Fig.1b, the atomic mirrors and beam splitters
are based on atomic Bragg diffraction on laser standing
waves, which couple atomic states with the same spin
and magnitude of momenta (|q| = |p|), but whose mo-
menta differ by p − q = ±G. For long enough Bragg
pulses, perfect Bragg diffraction can be achieved, i.e. no
other diffraction order is involved. Amplitudes and du-
rations of the Bragg pulses are chosen to produce either
π pulses that convert ±p into ±q and vice versa, or π/2
pulses that induce mixing between states with momenta
±p and ±q. We can express the original fermion opera-
tors in terms of the operators after the mixing as follows:

e−iθq↑ c†q↑ = cosβ d†1 − i sinβ eiχ↑ d†2,

e−iθp↑ c†p↑ = −i sinβe−iχ↑ d†1 + cosβ d†2,

e−iθ−p↓ c†−p↓ = cosβ d†3 − i sinβeiχ↓ d†4,

e−iθ−q↓ c†−q↓ = −i sinβe−iχ↓ d†3 + cosβ d†4. (2)

Here d†i are creation operators for particles observed in
detectors Di (i = 1, ..., 4). The mixing angle β (of the
order of π/2) and spin-dependent phases χσ can be con-
trolled through the amplitudes, durations and relative
phases of the Bragg laser pulses. We denote by θkσ the
phase accumulated by an atomic component with mo-
mentum k and spin σ during the propagation between
the source and the beam splitters.

If we assume that molecular wavefunctions for wave
vectors q and p differ only in phase, i.e. ψ(k) = |ψ| eiφk ,
we find the following expressions for the coincidence
counts of ni = d†idi

〈n1 n3 〉c = |ψ|2 sin2(2β) cos2
(

φq − φp + ΦI

2

)

,

〈n1 n4 〉c = |ψ|2
[

1 − sin2(2β) cos2
(

φq − φp + ΦI

2

)]

,

ΦI = θq↑ + θ−q↓ − θp↑ − θ−p↓ + χ↑ − χ↓, (3)

and similarly for 〈n2 n3 〉c and 〈n2 n4 〉c. The oscillatory
behavior of the correlation as a function of ΦI probes the
coherence of pairing in the molecule. To vary ΦI , one can,
for instance, change the phases χσ. Moreover, if we know
the precise value of ΦI , such coincidence signals yield the
relative phase φq − φp between different molecular com-
ponents. In the absence of precise knowledge of ΦI , the
phase difference φq − φp could be extracted through a
scheme analogous to white light fringes in classical op-
tics, whose pattern and shape can reveal the existence
of fundamental phase factors[27]. Note, however, that
k dependence of the phase factors acquired during the
propagation and the reflection may render these meth-
ods unreliable. Thus, we consider a second scheme which
avoids such a problem.

Scheme II. In this alternative scheme, we apply a π/2
Bragg pulse at the very beginning of the expansion to
mix atomic components with momenta q ↑ and p ↑, as
well as −q ↓ and −p ↓. This realizes, in a single opera-
tion, reflections on the mirrors and mixing on the beam
splitters. In scheme II, there is a common mode prop-
agation after the Bragg pulse, and phases acquired dur-
ing the expansion do not affect interference. Two atom
interference is revealed by coincidence counts with point
detectors just as in the previous scheme. The scheme can
be generalized to many-body case by replacing coincident
counts between point detectors with density imaging and
studying noise correlations between patterns registered
on opposite sides (see below).

To discuss scheme II, we start again with the exam-
ple of a dissociated Feshbach molecule, described by the
wavefunction in Eq.(1). We consider the case in which
the Bragg pulses for spin up and down atoms differ only
in the phase, and such pulses are created by the potentials
Vσ(r) = 2V0 cos(G.r−χσ). Here we assume again a per-
fect Bragg diffraction. Detectors Di (i = 1, 2, 3, 4) detect
atoms with momenta and spins p ↑, q ↑, −q ↓, −p ↓, re-
spectively. The only difference between this scheme and
scheme I is the absence of phase factors eiθqσ . As a result,
coincidence counts have forms similar to Eq.(3), with ΦI

replaced by ΦII = χ↑ − χ↓. Therefore, provided that we
know the phase difference χ↑ − χ↓ associated with the
two Bragg pulses, atom-atom coincidence counts directly
reveals φq − φp, i.e. the pairing symmetry in Eq.(1).

Many-body state analysis. We now apply scheme II to
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a BCS state of fermions |Ψ〉 =
∏

k (uk + vkc
†
k↑c

†
−k↓) |0〉.

This BCS wavefunction is general and can describe
weakly-coupled BCS paired states as well as a con-
densate of tightly-bound molecules. Here, we con-
sider the generic diffraction pulse that can mix states
whose momenta are separated by any integer multiple
of G. The effect of the mixing pulse is described by
the transformation of particle creation operators: c†k↑ →

c̃†k↑ =
∑

m αk↑
0,me

−imχ↑c†k+mG↑, c†k−G↑ → c̃†k−G↑ =
∑

m αk↑
−1,me

−i(m+1)χ↑c†k+mG↑, and analogously for c†−k↓

and c†−k+G↓. The scattering amplitudes αkσ
j,m are con-

trolled by the diffraction pulse amplitude V0 and its du-
ration τ . We assume that before the mixing pulse, only
states with momenta ±k, ±(k − G), which are close to
the Fermi surface, have finite probabilities to be occu-
pied, while states with momenta ±(k−mG) for m 6= 0, 1
, which are far from the Fermi surface, are empty. The
mixing pulse then induces the interference between par-
ticles with momenta ±k and ±(k − G).

The signature of non-trivial pairing of the BCS wave-
function shows up in the angular dependence of the phase
φk in vk = |vk|e

iφk . In order to probe the relative phase
∆φ = φk − φk−G between pairs with momenta k and
k − G, we consider the following density noise correla-
tion after the interference:

〈δnk↑ δn−k+G↓〉 = 〈nk↑n−k+G↓〉 − 〈nk↑〉〈n−k+G↓〉

=
∣

∣

∣
vkuk−Gα

k↑
00α

−k↓
01 e−iχ↓ + ukvk−Gα

k↑
−10α

−k↓
11 e−iχ↑

∣

∣

∣

2

−
(

|vk|
2 − |vk−G|2

)

×
(

|vk|
2|αk↑

00 |
2|αk↑

−10α
−k↓
11 |2 − |vk−G|2|α−k↓

01 |2|α−k↓
11 |2

)

.(4)

In analogy with the case of a Feshbach molecule, the first
line in the RHS of Eq.(4) contains an interference term
which depends on the relative phase ∆φ as well as on
ΦII = χ↑ − χ↓.

Space- and time-resolved single atom detection[19, 22,
28] permits direct measurements of atom-atom correla-
tions for specific momenta, corresponding to Eq.(4). Al-
ternatively, one may look for noise correlation in absorp-
tion images after time of flight[18]. In this case, absorp-
tion imaging, as well as finite resolution of detectors, re-
sult in the integration of the atomic density. In order to
take into account these effects, we have integrated Eq.(4)
over ranges of momenta as shown in Fig.2a. We present
in Fig.2b the numerical result of this integration, which
displays noise correlation in integrated density vs. the
phase difference χ↑ − χ↓ of the diffraction pulses. Here
we took the integration range to be |∆ky| = |G|/10,
|∆kx| = |G|/10, |∆kz | = 5|G| and the pairing gap to
be ∆ ≈ 0.1EF . The diffraction pulse amplitude is set to
V0/ER = 2 where ER = |G|2/8m is the recoil energy,
and its duration is chosen to have the maximum oscilla-
tion of the signal. We assume that the integration range
is sufficiently small that the phases of the Cooper pairs
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FIG. 2: a) In order to take into account the finite resolu-
tion of detectors and the integration in absorption imaging,
the density noise correlation is integrated over the cylinders
shown in the figure. b) Integrated density noise correlations
〈δNV↑

δNV↓
〉 as a function of phase difference χ↑ − χ↓ for a

diffraction pulse of amplitude V0/ER = 2 and a duration τ
which yields the maximum oscillation of the signal. Blue,
Green(dash-dotted line) and Red(dashed line) curves corre-
spond to ∆φ = φk − φk−G = 0, π/2 and π, respectively.
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FIG. 3: Integrated noise correlations 〈δNV↑
δNV↓

〉 as a func-
tion of V0τ a) for a Bragg pulse amplitude V0/ER = 2,
and b) for a Bragg pulse amplitude V0/ER = 20. Blue,
Green(dash-dotted line) and Red(dashed line) curves corre-
spond to ∆φ = φk − φk−G = 0, π/2 and π, respectively.

φk and φk−G are constant in the integration range.

The oscillatory behavior of the integrated noise cor-
relations 〈δNV↑

δNV↓
〉 as a function of χ↑ − χ↓(See Fig

2b) should provide an unambiguous proof of the Cooper
pair coherence. Moreover, the value of the correlation
at χ↑ − χ↓ = 0 yields information about the phase dif-
ference ∆φ = φk − φk−G, which is the quantity we are
interested in. The value of the correlation at χ↑−χ↓ = 0
also depends on the scattering amplitudes αkσ

j,m, and thus
on V0τ . In Fig.3, we present the integrated noise corre-
lation signal 〈δNV↑

δNV↓
〉 at χ↑ − χ↓ = 0 as a function

of V0τ for three different values of ∆φ, and find striking
differences. We conclude that it should be possible to
discriminate between ∆φ = 0 and ∆φ = π even when
full 3D resolution is not available.

In discussions so far, we assumed that the BCS pairs or
molecules are at rest before dissociation. When molecules
are cold but not condensed, there is a spread in the center
of mass momenta determined by the temperature. Even
in this case, there is still a perfect coherence between dif-
ferent parts of the wavefunction of each molecule, yield-
ing a two-body interference. However, the average of
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FIG. 4: a) Illustration of the sign of the CDW amplitude

ψph(k) = 〈c†kσck+Qσ〉 for d-wave CDW state. b), c) Phase
sensitive detection of the symmetry of the d-wave CDW state
in TOF experiments. For b), two pulses which transfer mo-
menta G and G′ are applied at the beginning of expansion.
In c), a single pulse with momentum transfer G is applied.
All the couplings through the Bragg pulses are indicated by
solid arrows. Here Q is the wave vector of CDW.

these interference terms over the center of mass momenta
of individual molecules could potentially result in the
washing out of noise correlations. We expect this sup-
pression to be moderate as long as thermal spread of
molecule center of mass momenta is small enough.

Systems with particle-hole correlations. There are sev-
eral types of many-body states characterized by correla-
tions in the particle-hole channel, such as charge and spin
density wave states (CDW and SDW). The most exotic
of them have a finite angular momentum. This means
that we have 〈c†kσck+Qσ〉 = ψph(k), where ψph(k) has a
non-trivial angular dependence.

Our scheme above can be generalized to provide an
unambiguous phase sensitive detection of such states as
well. To be concrete, let us consider a 2D system near
half-filling. In this case, one can combine two different
measurements of correlation functions to obtain the in-
formation on the order parameter ψph(k), as shown in
Fig.4b and c. In Fig.4b, two Bragg pulses couple k and
k′ + Q, as well as k′ and k + Q. Here, the correlation
function 〈δnkδnk′〉 contains an interference term propor-
tional to ψph(k)ψph(k′). In Fig.4c, a Bragg pulse cou-
ples k and k′, and the correlation function 〈δnkδnk′+Q〉
contains the term ψ∗

ph(k)ψph(k′). When combined, these
information should not only provide evidence of the angu-
lar dependence of CDW, but also allow one to distinguish
site and band centered density wave states.

In conclusion, we have proposed a new method, in-
spired from quantum optics, for performing phase sen-
sitive measurements of non-trivial order parameters in
entangled systems of ultra-cold atoms. This is a new ex-
ample of ultra-cold atoms quantum simulators, with a
view toward studying open problems in strongly corre-
lated systems. We acknowledge useful discussions with
E. Altman, I. Bloch, M. Lukin, and thank C.I. West-
brook for his suggestions on the manuscript. This work
was supported by the NSF grant DMR-0705472, Har-
vard MIT CUA, DARPA OLE program, AFOSR MURI,
CNRS, ANR, Triangle de la Physique, IFRAF.
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