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In the context of toroidal gyrokinetic simulations it is shown that a hierarchy of damped modes
is excited in the nonlinear turbulent state. These modes exist at the same spatial scales as the
unstable eigenmodes that drive the turbulence. The larger amplitude subdominant modes are
weakly damped and exhibit smooth, large scale structure in velocity space and in the direction
parallel to the magnetic field. Modes with increasingly fine scale structure are excited to decreasing
amplitudes. In aggregate damped modes define a potent energy sink. This leads to an overlap of
the spatial scales of energy injection and peak dissipation, a feature that is in contrast with more
traditional turbulent systems.
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In high Reynolds number fluid turbulence, as modeled
by the Navier-Stokes equation, energy is injected at large
scales and conservatively transferred by nonlinear inter-
actions through a broad inertial range to a dissipation
range at small scales [1]. Saturation is achieved when
the rate of energy injection at large scales is balanced
by the rate of energy dissipation at small scales. Satu-
ration theories for plasma microturbulence typically in-
volve variations on this theme. Indeed, such an energy
cascade occurs in both physical space and velocity space
for small scale (k⊥ρi � 1 where k⊥ is the wavenumber
perpendicular to the magnetic field and ρi is the ion gyro-
radius), homogeneous, two-dimensional, decaying plasma
turbulence [2]. For toroidal fusion plasmas, conventional
wisdom also holds that dissipation occurs largely at small
spatial scales. This is consistent, for example, with the
notion that zonal flows suppress turbulence by shearing,
an inertial process that enhances transfer to small scales
[3]. In this work we show that for ion temperature gradi-
ent (ITG) driven turbulence in toroidal fusion plasmas as
modeled by the gyrokinetic equations, dissipation occurs
at all spatial scales, peaking at the large scales including
those where the instability drives the turbulence. This
is made possible by the nonlinear excitation of damped
modes at the same spatial scales as the unstable eigen-
modes that drive the turbulence. This excitation of a
large number of damped modes makes plasma microtur-
bulence much different from hydrodynamic turbulence in
a way not fully appreciated before.

The instabilities that drive plasma microturbulence are
mathematically defined as eigenmodes of a linear oper-
ator. In almost all microturbulence models, the unsta-
ble eigenmodes are accompanied by stable eigenmodes
which have typically been neglected in analyses of tur-
bulent dynamics. Recent work has shown that damped
eigenmodes are critical in understanding saturation and
transport in fluid models of plasma microturbulence [4].
Initial efforts have been made to examine the effect in
gyrokinetics [5]. In this work the explicit role of damped

modes in gyrokinetic simulations is examined for the first
time.

The gyrokinetic model solves for the gyrocenter distri-
bution function, g, representing the perturbed distribu-
tion of guiding centers (deviation from Maxwellian). It
is a function of six variables: three spatial coordinates
(the radial direction, x, the mostly-poloidal binormal di-
rection y, and the direction parallel to the magnetic field,
z), two velocity coordinates (represented here by parallel
velocity, v||, and magnetic moment, µ), and time. The
adiabatic electron assumption reduces the problem to a
single ion distribution function. We employ the flux-tube
representation [6] allowing a Fourier decomposition in x,
and y. The resulting wavenumbers (kx, ky), which we will
call wavevectors in this letter, are coupled through the
nonlinearity of the gyrokinetic equation. At issue is the
dependence of energy dissipation on these perpendicular
scales.

When studying linear stability in plasma microturbu-
lence, one selects a wavevector (kx, ky) and solves for the
eigenvalues and eigenvectors of a linear differential oper-
ator. In gyrokinetics, linear analysis is frequently limited
to an initial value simulation; when there is an instabil-
ity at this wavevector, the eigenmode with the largest
growth rate grows exponentially and eventually domi-
nates the solution. The resulting solution for the distri-
bution function can be expressed as gkx,ky

(z, v||, µ, t) =
f(z, v||, µ)h(t), where f defines the mode structure and
h defines the time dependence in the form of e−i(ω+iγ)t.
For the parameters used in this study, the ITG insta-
bility is the only instability in the system, and at each
wavevector there is at most one unstable eigenmode.
The region of instability is at large scales, approximately
kxρi ≈ (−1/2, 1/2), kyρi ≈ (±kyminρi,±1/2). Outside
of this region, at smaller spatial scales, all linear eigen-
modes are stable, which contributes to the conventional
wisdom that dissipation occurs predominantly at small
scales. However, in the region of instability, despite the
presence of unstable eigenmodes, there also exist stable
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eigenmodes that can provide a means of energy dissi-
pation provided they are driven to finite amplitude by
nonlinear interactions. For each wavevector, numerical
discretization allows for N = nz × nv|| × nµ degrees of
freedom, where the n′s denote the number of grid points
in each coordinate. The unstable eigenmode defines only
one of these degrees of freedom; the remaining degrees of
freedom provide an energy sink at large spatial scales.

We seek to characterize the nonlinear state by decom-
posing the gyrokinetic distribution function for selected
wavevectors (kx, ky) as a superposition of modes,

gkx,ky
(z, v||, µ, t) =

∑
n

f
(n)
kx,ky

(z, v||, µ)h(n)
kx,ky

(t). (1)

The structure f (1)(z, v||, µ) corresponds to the unstable
eigenmode, but its time amplitude, h(1)(t), rather than
exhibiting its linear behavior e−i(ω+iγ)t, fluctuates as
determined by a balance between the linear drive and
the stabilizing influence of nonlinear interactions. The
other modes are also defined by fixed mode structures
f (n)(z, v||, µ) and fluctuate according to their respective
time amplitudes h(n)(t) in such a way that a superpo-
sition of all the modes exactly reproduces the total dis-
tribution function at each moment in time. In contrast
with the unstable mode, the time amplitudes h(n)(t) of
damped modes fluctuate according to a balance between
nonlinear drive and linear damping, the latter of which
dissipates energy from the system, thereby facilitating
saturation of the turbulence. This decomposition is con-
structed by performing a proper orthogonal decomposi-
tion [7] (POD) on data from a standard nonlinear gy-
rokinetic simulation. This provides a means to examine
separately the contribution of individual modes, stable
or unstable, to the saturation of the turbulence.

To study the role of damped modes in saturation we
track energy injected into or removed from the turbu-
lence using diagnostics related to the conserved (in the
absence of drive and dissipation) energy-like quantity
[8] E =

∫
dv||dµdzB0πn0T0|g|2/F0 +

∫
dzD(k⊥, z)|φ|2,

where B0 is the equilibrium magnetic field, φ is the elec-
trostatic potential, n0 and T0 are the background density
and temperature, D is a function of z and the perpendic-
ular wavenumbers. The energy evolves according to

∂Ek
∂t

∣∣∣∣∣
N.C.

= Qk + Ck (2)

where Q =
∫
dv||dµdzπn0T0B0/LT (v2

|| + µB0)g∗ikyφ̄ is
a term proportional to the heat flux and includes the
turbulent drive (φ̄ is the gyro-averaged potential, and
LT is the temperature gradient scale length), C repre-
sents collisional dissipation and, in a simulation, what-
ever artificial dissipation (e.g., hyper-diffusive terms) is
included in the code. The subscript N.C. indicates that

FIG. 1: Energy drive Qk and dissipation Ck time averaged
over the nonlinear state and averaged over the z direction, as
a function of (A) kx summed over ky, and (B) ky summed
over kx.

this equation describes only the non-conservative energy
evolution, i.e., processes that inject or dissipate net en-
ergy from the fluctuations (as opposed to processes like
the E ×B nonlinearity that move energy from one scale
to another in a conservative fashion).

The GENE code [9] is used to simulate ITG driven
turbulence defined by the Cyclone Base Case parameters
[10] of safety factor q = 1.4, magnetic shear ŝ = 0.8,
inverse aspect ratio ε = r/R = 0.18, equilibrium ratios
of density and temperature ni/ne = Ti/Te = 1.0, and
background gradients R/LT = 6.9, R/Ln = 2.2 where
R is the major radius. The perpendicular box size is
(Lx, Ly) = (126ρi, 126ρi), and the number of grid points
is 32 × 48 × 8 for the (z, v||, µ) coordinates respectively.
The perpendicular spatial resolution consists of 128 grid
points in the x direction giving kx,maxρi = 3.12, and
64 ky Fourier modes for ky,maxρi = 3.15. We devi-
ate from the Cyclone Base Case by using a linearized
Landau-Boltzmann collision operator rather than exclu-
sively artificial dissipation. The collision frequency is
ν(R/vT ) = 3.0 × 10−3 which is much less than the dy-
namic time scales of the system (e.g., the most unstable
mode at kyρi = 0.3 has a growth rate γ(R/vT ) = 0.267,
and frequency ω(R/vT ) = 0.783 so that ν/ω ∼ 10−2).
In these runs Ck consists mostly of collisional dissipation
but also includes contributions from fourth order hyper-
diffusive dissipation in the z and v|| coordinates.

To illustrate the spatial scale dependence of the energy
balance we first consider separately the drive term Qk
and the dissipation term Ck in Eq. (2). Figure 1 shows
Qk and Ck from the saturated state of a simulation, av-
eraged over the parallel coordinate and time. In Fig. 1A
kx dependence is shown and ky is summed; in Fig. 1B
ky dependence is shown and kx is summed. There is a
significant amount of dissipation at all scales, including
ky = 0.0 and high k⊥. However, the largest range of
peak dissipation corresponds with the same scales where
the energy drive peaks. As described in detail below,
the drive Qk is dominated by the unstable modes, while
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FIG. 2: The spectrum of singular values (A), energy drive Qk

for each normalized POD mode (B), and dissipation Ck for
each normalized mode (C). For kyρi = 0.2, kxρi = 0.0.

the dissipation Ck is dominated by the stable modes.
Contrast this with the corresponding scenario in high
Reynolds number Navier-Stokes turbulence for which the
drive is localized at large scales, the dissipation is local-
ized at small scales and there is a broad inertial range of
intermediate scales with neither drive nor dissipation.

The observed k-dependence of the dissipation is due to
the excitation of a hierarchy of damped modes in the non-
linear state. POD analysis elegantly characterizes this
hierarchy of modes. POD uses the singular value decom-
position [11] (SVD) of a matrix to create an optimal or-
thonormal basis for fluctuation data. In this application,
each column of the input matrix consists of a time slice
(at every 50 time steps) of the nonlinearly evolved gyroki-
netic distribution function for a selected wavevector. The
non-spectral coordinates (z, v||, µ) are unraveled to one
dimension, e.g., as the data would be stored in computer
memory. The singular values, sn, define the amplitudes
of the nth modes. The left singular vectors are the POD
modes - basis vectors that are orthonormal with regard
to the scalar product

∮
f (n)∗f (m)J(z)dzdv||dµ, where

J(z) is a Jacobian (these correspond to f (n)(z, v||, µ) in
Eq. (1)). The right singular vectors are time traces of the
the amplitudes of the corresponding POD modes (these,
multiplied by the singular values, correspond to h(n)(t)
in Eq. (1)).

It is observed that, for wavevectors with a strongly
unstable eigenmode, the n = 1 POD mode is very simi-
lar to the unstable linear eigenmode; they exhibit nearly
identical mode structures and the scalar product between
the two is ∼ 0.9. As a result, for much of this study we
will conceptually equate the n = 1 POD mode with the
corresponding unstable linear eigenmode.

In order to elucidate the energy drive and dissipation

processes in the instability range, we will examine in de-
tail the POD analysis of the wavevector of peak trans-
port, kyρi = 0.2, kxρi = 0.0. These results are represen-
tative of other important energy-containing wavevectors
in the spectrum. The POD singular values decay rapidly
in mode number, n, up to n ∼ 100. At that point and
beyond the spectrum exhibits exponential decay as seen
in Fig. 2A. Further insight can be gained by calculating
Qk and Ck for each mode f (n)(z, v||, µ). In these calcula-
tions Qk+Ck can, in a sense, be conceptualized as growth
(or damping) rates since the modes are normalized and
contain no amplitude dependence. The mode-by-mode
values of Ck are all negative and increase strongly in
amplitude with mode number, as seen in Fig. 2C. As
expected, the first POD mode produces a large positive
value of Qk. The remaining modes are associated with
amplitudes of Qk which decrease with mode number and
have seemingly random signs, i.e., their φ∗T phase angles
are randomly distributed around zero. This is shown in
Fig. 2B. These results differ from fluid models, where the
damped eigenmodes are stable due to a large and system-
atic effect on cross correlations like φ∗T [4] (in contrast
with the modes described here, which are damped due to
collisional dissipation).

The contribution of the n > 1 modes to the energy
balance can be separated from that of the unstable (n =
1) mode by decomposing the distribution function as
g = f (1)h(1) +f (res)h(res) where the residual distribution
function, f (res)h(res), is the sum of the n > 1 POD modes
and represents all fluctuations not associated with the un-
stable mode. It is found that the energy drive Qk is dom-
inated by the unstable mode, whereas the dissipation Ck
is dominated by the residual distribution function. This
can be seen by examining a selection of wavevectors in the
region of instability centered around the peak of the spec-
trum: (kxρi = 0.0, kyρi = [0.05, 0.2, 0.3, 0.4], and kyρi =
0.2, kxρi = [0.1, 0.2, 0.4]). For the sum of these wavevec-
tors, the residual drive, Qk(f (res))

∫
|h(res)(t)|2dt, ac-

counts for only 7% of the total energy drive, but the
residual dissipation Ck(f (res))

∫
|h(res)(t)|2dt accounts

for 63% of the total dissipation. Both the dissipation
associated with the n = 1 mode and the residual dis-
sipation peak at kyρi = 0.2, kxρi = 0.0 and decrease
as k⊥ increases. To summarize: unstable eigenmodes
(collectively represented here by f

(1)
kx,ky

) drive the tur-
bulence. Nonlinear interactions excite linearly damped
modes (represented here by f

(res)
kx,ky

) at the same perpen-
dicular scales (kx, ky) as the driving instability. The ex-
citation of these modes causes the dissipation to peak at
large perpendicular scales. The calculation in this para-
graph, in conjunction with Fig. 1, establish the main
claim of this letter; Fig. 1 shows that the scale range
of energy drive and dissipation overlap, and this calcu-
lation demonstrates that, in this same scale range, the
dissipation is dominated by modes other than the unsta-
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FIG. 3: Mode structures for a selection of POD modes at the
peak of the nonlinear spectrum, kyρi = 0.2, kxρi = 0.0. The
mode structures of the electrostatic potential are shown on the
top row for modes 1, 2, 10, and 100 and the v|| dependence is
shown on the bottom row for same POD modes at µ = 0.18
and z = 0. Fine scale structure develops in both coordinates
as n increases.

ble mode.
In order to characterize the POD modes and describe

their role in the energetics, we show in Fig. 3 mode struc-
tures for selected POD modes for the wavevector of peak
transport, kyρi = 0.2, kxρi = 0.0. On the top row of
Fig. 3, the parallel mode structures for the electrostatic
potential are plotted (for POD modes 1, 2, 10, and 100),
and on the bottom row the v|| dependence is shown (for
the same POD modes at µ = 0.18, z = 0). As mentioned
above, the n = 1 POD modes are very similar to the
unstable linear eigenmodes. The second most important
structure, the n = 2 POD mode, is also very similar to
a linear eigenmode. This linear eigenmode is the most
weakly damped stable mode, having a damping rate an
order of magnitude smaller than the growth rate of the
ITG mode. Figure 3 also demonstrates the fine scale
structure that develops in the z and v|| coordinates. The
scale lengths in the z and v|| coordinates both decrease
as n increases. As a result, these modes become increas-
ingly dissipative due to the higher-order derivatives in
the dissipation operators. The development of fine scale
structure in v|| is consistent with aspects of linear phase
mixing [12]. There must also be a nonlinear excitation
mechanism involved in the process since the linear system
produces only the unstable mode (all other eigenmodes
decay exponentially). An effort to better understand this
phenomenon will be an aspect of future work.

The results presented in this letter do not contradict
the numerically observed power law k⊥ spectra reported
in the literature [2, 13, 14]. From a dissipation range
analysis [15] a spectrum goes as k−α exp[c(k/kd)−β ]
where kd is the wavenumber at which damping and non-
linear decorrelation rates are equal, c is a positive con-
stant, and 0 < β < 2/3, provided the damping in-
creases with wavenumber k more slowly than the non-

linear decorrelation rate. This condition appears to be
satisfied for the data presented here. This spectrum tran-
sitions to a regime dominated by the power law behavior
for high k. An analysis of high-k⊥ spectra for simulations
very similar to those presented in this letter is provided
in Ref. [14] where power law spectra agree quite well with
those described in Ref. [2].

The following is a plausible saturation scenario:
Through collisional dissipation, damped modes dissipate
a significant portion of the injected energy at the same
spatial scales as the instability operates (k⊥ρi . 1). This
is accompanied by a spatial cascade carrying energy to
smaller perpendicular scales (k⊥ρi > 1). At these smaller
scales, the remaining dissipation occurs and processes
such as nonlinear perpendicular phase mixing dominate.

In summary, we have shown that in ITG driven turbu-
lence modeled by the gyrokinetic equations, dissipation
occurs at all scales, peaking in the wavenumber range of
the instability drive. The dissipation is associated with
a very large number of damped eigenmodes excited to
finite amplitude by nonlinearity.
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