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Topological chaos and periodic braiding of almost-cyclic sets
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In certain (2+1)-dimensional dynamical systems, the braiding of periodic orbits provides a frame-
work for analyzing chaos in the system through application of the Thurston-Nielsen classification
theorem. Periodic orbits generated by the dynamics can behave as physical obstructions that ‘stir’
the surrounding domain and serve as the basis for this topological analysis. We provide evidence
that, even in the absence of periodic orbits, almost-cyclic regions identified using a transfer operator
approach can reveal underlying structure that enables topological analysis of chaos in the domain.

PACS numbers: 47.10.Fg, 47.52.+j, 02.40.Pc, 47.15.Rq

There is much interest in understanding how chaos
arises in dynamical systems, how to detect it, and how to
design for (or against) it [1]. This perspective has proven
important in many areas of the physical sciences, includ-
ing atomic physics [2], climate modeling [3], and astron-
omy [4]. In fluid mechanics, the presence of chaotic fluid
particle trajectories is often associated with enhanced
mixing [5]. Chaotic trajectories can be produced by de-
terministic, regular velocity fields, making this approach
a particularly important tool for analyzing very viscous
and/or small-scale fluid transport [6], but the principles
apply to flows at any scale.

One recent approach to analyzing chaos in a fluid sys-
tem is the identification of ‘topological chaos’, or chaos
due to topology of internal boundary motions such as
moving rods [7, 8]. This approach is based on appli-
cation of the Thurston-Nielsen classification theorem [9]
(TNCT) to certain (2+1)-dimensional flows: either two-
dimensional, time-dependent flows or three-dimensional
flows that, because of symmetry, can be cast as surface
homeomorphisms (i.e. two-dimensional mappings) [10].
The TNCT provides quantitative lower bounds on max-
imum stretching rates in such flows using only informa-
tion from the boundary motions. ‘Ghost rods’, or peri-
odic orbits generated by the dynamics, can also behave
as physical obstructions that ‘stir’ the surrounding fluid,
providing a basis for the topological analysis in place
of physical boundaries [11]. A similar classification of
strange attractors is given by the relative rotations rates
and linking numbers for embedded periodic orbits [12].
With these topological approaches it is possible to ob-
serve the motion of a small number of objects, be they
physical obstructions or ghost rods, and from the topol-
ogy of their trajectories infer what possible, but otherwise
unobserved, motions are present in the system.

The analysis of dynamical systems using the TNCT
has been largely dependent on the presence and identi-
fication of exactly periodic orbits [11, 13]. Recently the
analysis of ghost rod topology in a fluid has been ex-
tended to aperiodic orbits [14, 15], relaxing a substantial
restriction in the application of the TNCT. However, this
approach introduces the complexity of needing to iden-

tify appropriate aperiodic orbits, as a random selection
of trajectories generally leads to a poor estimate of the
overall system behavior [14].

Here we apply the TNCT based on the presence of
almost-cyclic sets. Almost-cyclic sets (ACS) [16] are
closely related to almost-invariant sets (AIS) [17], which
define macroscopic structures preserved by the dynamics.
This generalization is an important step in making the
analysis of topological chaos using the TNCT applicable
to a wider range of problems, including more complex
fluid systems [18] and other dynamical systems that can
be represented as surface homeomorphisms [2, 4].

We first give a description of the example system we
use to examine the role of ACS in topological chaos, and
we demonstrate application of the TNCT to a reference
case in which there exist low-order periodic orbits. We
then show that an eigenfunction of the Perron-Frobenius
operator associated with this system is an ACS with
topological properties that give an estimate of the mea-
sured topological entropy, even when the system is per-
turbed so that appropriate periodic particle trajectories
no longer exist. That is, periodic motion of ACS, in-
stead of directly observed particle trajectories, can iden-
tify ghost rods for application of the TNCT.

For simplicity of exposition, we examine a flow having
an exact mathematical representation. Consider time-
dependent Stokes flow [19] in the domain M = {(x, y) :
0 ≤ x ≤ 2a,−b ≤ y ≤ b} shown in Fig. 1. Flow is driven
by a tangential velocity along the bottom boundary

V (x, t) = U1 sin (π x/2 a+ φ) + U2 sin (π x/a+ 2φ) ,

φ(t) =

{

π for t ∈ [nτf , (n+ 1)τf/2),

0 for t ∈ [(n+ 1)τf/2, (n+ 1)τf ),

where n is an integer, and a tangential velocity along the
top boundary given by −V (x, t), so that the flow pattern
is symmetric about y = 0. The (otherwise steady) flow
pattern is reflected about x = a every t = nτf/2. The
mathematical representation for this flow is a closed-form
solution of the biharmonic equation for the streamfunc-
tion ψ(x, y, t) [20]. This system is a variation on the clas-
sic double-lid-driven cavity flow [21], with the side bound-
aries taken to be free surfaces [22] and with the top and
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FIG. 1. Streamlines in the model flow for (a) t ∈ [nτf , (n+1)τf /2)
and (b) t ∈ [(n+1)τf /2, (n+1)τf ). Solid circles mark fixed points
at (a∓xs, 0); open circles mark points at (a, 0) and (a±xs, 0) that
move along the dotted streamlines. (c) Stretching of a material
line initially along the x-axis (dashed line) after three periods of
the flow (solid line). (d) The mathematical braid on 3 strands
representing the period-3 orbits as viewed from y < −b.

bottom boundaries each having two regions of opposing
motion. A similar model has been used to study counter-
rotating flow in a channel due to herringbone-patterned
surface grooves [23].

The motion of a passive (i.e. non-diffusive, inertia-
less, drag-free) particle in this system is given by so-
lution of dx/dt = V(x, t), where x(t) = (x, y) is the
particle position and V is the velocity field defined by
V = (∂ψ/∂y,−∂ψ/∂x). While the fluid system is vis-
cous, and thus is dissipative, passive particle motions in
this time-periodic, area-preserving flow comprise a con-
servative Hamiltonian system.

Throughout this Letter we focus on the aspect ratio
a/b = 3 and the velocity ratio U2/U1 ≈ 0.841, which
gives counter-rotating streamline patterns as shown in
Fig. 1. The value of U2/U1 is chosen so that the points
(a, 0) and (a+ xs, 0) in Fig. 1(a) lie on the same stream-
line and (a− xs, 0) is a fixed point. Perturbations in a/b
and U2/U1 can be considered, but we do not do so here.
We begin our discussion with a = π, U1 ≈ 9.928, and
τf = τ∗f = 1.0, which we refer to as our ‘reference case’.
With this special choice of parameters, passive particles
located initially at (a, 0) and (a+ xs, 0) have exactly ex-
changed position when t = τ∗f /2. The flow pattern is
then reflected about x = a, as shown in Fig. 1(b), and
the fluid particles located at (a − xs, 0) and (a, 0) when
t = τ∗f /2 have exactly exchanged position when t = τ∗f .
This sequence of flow patterns is then repeated, and these
three points along the x-axis lie on period-3 orbits of the
flow. The response of this system to perturbations in the
value of τf is a central theme of this discussion.

Braid theory provides a framework for discussing the
topology of periodic orbits, with the space-time trajec-

tory of each orbit represented by a single braid strand.
In our reference case, the period-3 orbit trajectories can
be represented by the braid shown in Fig. 1(d). Since
it is the topology of the braid that is classified by the
TNCT, it is the direction and sequence of the strand
interchanges, not the actual dynamics along the trajec-
tories, that are essential in the analysis. Each strand
returns to its initial position every ∆t = 3τf = τb, which
gives one period of the braid. The topology of this braid
is identical to that in [7, 13].

According to the TNCT, the braid in Fig. 1(d) is of
pseudo-Anosov (pA) type. That is, the underlying flow
map is topologically equivalent (i.e., isotopic) to an ideal
pA map that, except for a finite number of singularities,
stretches everywhere in the unstable direction by a factor
λTN > 1 and contracts everywhere in the stable direc-
tion by a factor 1/λTN [7, 10]. In the ideal case, material
lines throughout the domain grow as λp

TN
, where p is the

(integer) period of the braid. This chaotic behavior is
preserved under any continuous deformation of the do-
main that maintains the topology of the periodic orbit
trajectories [24], so in our reference case a subdomain of
the fluid is subjected to exponential stretching at a rate
that is at least λTN. Thus, the TNCT provides a lower
bound on the topological entropy of the flow, h = ln(λ),
where λ ≥ λTN is the maximum line-stretching exponent
over all possible initial material lines. The size of the
relevant subdomain is not predicted by the TNCT, but
experimental results indicate that this region is typically
on the scale of the orbit motions [7].

For the braid in Fig. 1(d), the TNCT gives λTN =
(3 +

√
5)/2, or hTN = ln(λTN) ≈ 0.962. The actual

topological entropy of this flow can be determined by
computing the asymptotic stretching rate of topologically
nontrivial lines [25], such as lines that join a periodic
point with the outer boundary. For the reference case we
compute h ≈ 0.968, which is well represented by hTN.
In general, if the braid representing periodic orbits in a
flow is of pA type, this small amount of topological data
establishes a quantitative lower bound on the complexity
in the dynamics of the flow.

In [7], the fluid motion is generated by causing solid
rods to move along a pA braid. Here, the periodic orbits
of the braid are driven by the flow. Despite the passive
nature of the braid in this case, the stretching and folding
pattern in the surrounding fluid, Fig. 1(c), is similar to
that generated by actual rods moving through the flow
(cf. Fig. 2 in [7]). Periodic orbits such as these have thus
been termed ‘ghost rods’ [11].

Varying the value of τf away from τ∗f prevents the
points identified in Fig. 1 from exactly exchanging po-
sition during one period of the flow, and these points no
longer lie on period-3 orbits. Increasing τf causes each of
the periodic points in the reference case to bifurcate into
a set of two hyperbolic points and two elliptic points, as
in Fig. 2(b). These four points travel together through
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FIG. 2. (a) Topological entropy for the flow. Error bars are cov-
ered by each data point. Inset (b) shows portions of the stable and
unstable manifolds of the hyperbolic periodic points the Poincaré
section in the center of the domain for τf = 1.04. (c) Variation
in µ2, the second-largest eigenvalue for τ∗

f
. AIS determined by the

corresponding eigenvector ν2 are shown for τf (d) = 1, (e) ≈ 0.965,
(f) ≈ 0.95, and (g) ≈ 0.93. The elements of ν2 (with components
ν2i) are colored according to magnitude on a linear grayscale from
white (for ν2i ≤ 0.01) to black (for ν2i ≥ 0.85).

the flow, twisting around one another as they move, and
one can view these four trajectories as forming a single
twisted strand. The collective motion of these 12 peri-
odic orbits is thus similar to that of the three periodic
orbits in the reference case, and the perturbed flow can
be represented by a braid that is reducible to the pA
braid in Fig. 1(d). For large τf , the energy added to the
flow leads to additional stretching and folding beyond
that predicted by the TNCT, but Fig. 2(a) shows that
hTN ≈ 0.962 remains a good estimate of the flow behav-
ior for roughly a 5% increase in τf and remains a lower
bound on h for all τf > τ∗f considered here.

In contrast, perturbing τf below τ∗f removes the low-
order periodic orbits that can readily be identified as
ghost rods. However, it is clear from the data in Fig. 2(a)
that hTN from the reference case continues to provide a
lower bound on h for roughly a 5% decrease in τf , despite
the fact that there are no longer any period-3 orbits on
which to base the topological analysis.

To explain this persistence of stretching as τf de-

creases, we adopt a set-oriented approach for identify-
ing almost periodic behavior in the dynamics. In this
approach, the domain (or phase space) is decomposed
into subsets such that a typical trajectory has a very
small probability of moving between subsets in a short
time. In our example there are two subsets, or almost-
invariant sets (AIS), one of which is a disconnected set of
three components that map one to another; these com-
ponents are the almost-cyclic sets (ACS) of interest. The
other subset is its phase space complement. The space-
time trajectories of the ACS are periodic, even though
all particle trajectories are likely to ‘leak’ from these sets
(for τf < τ∗f ) if given sufficient time.

We compute the AIS, and hence the ACS, using
the discretized Perron-Frobenius transfer operator, Pt,τf

,
which we approximate using a multi-dimensional Ulam’s
method [16, 26]. From Pt,τf

we form a reversible matrix
Rt,τf

and determine its eigenspectrum [27]. This eigen-
spectrum provides insight into the various AIS present in
the system [17]. The first eigenvector, ν1, corresponding
to the eigenvalue µ1 = 1, is the invariant (uniform) distri-
bution of the system. The AIS of interest are isolated by
the (near) zero contour of the eigenvector ν2, which cor-
responds to the second largest eigenvalue µ2 < 1. The
magnitude of µ2 gives a measure of the invariance, or
‘leakiness’ of this AIS [17]. In general, one can also con-
sider the AIS given by lower ranked eigenvectors of Rt,τf

,
which capture increasingly smaller scale structures [28].
For this flow, the ν2 eigenvector family captures the dom-
inant braiding for the range of τf considered.

The eigenvector ν2 for the reference case is shown
in Fig. 2(d). The AIS in this case is a collection of
three ACS that form around the three periodic points.
The space-time trajectories of the ACS track the pe-
riodic orbits and thus can be represented by the same
braid. Consider now the change in structure of ν2 as the
value of τf is decreased from τ∗f [29]. Figure 2(c) shows
that as τf decreases, µ2 decreases, indicating that the
ACS become more leaky. As illustrated in Fig. 2(e), for
0.965 . τf < 1, the flow still contains three ACS despite
the fact that these sets do not contain any period-3 orbits,
and the relative motion of the ACS ‘shadows’ that of the
(now nonexistent) periodic orbits [30]. While the fluid
in these sets eventually leaks out, by definition there are
particles that move with the ACS for a significant length
of time. The braid representing the relative motion of
these particles is isotopic to the braid in Fig. 1(d) over
the length of time these particles remain in the ACS. The
infinite-time braid of these particles is almost certainly
aperiodic, but the entropy of the finite-time braid, par-
ticularly when shared by a number of different particles,
provides a good representation of the actual entropy of
the flow [15]. Thus, the entropy predicted by the braid
of the ACS, hTN, gives an accurate lower bound on the
actual entropy of the flow h, as shown in Fig. 2(a).

The three ACS identified for 0.965 . τf ≤ 1 begin to
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break up around τf ≈ 0.95, Fig. 2(f), and when τf ≈ 0.93
the flow appears to contain 13 ACS, Fig. 2(g), that gen-
erate a new braid with a lower entropy. This breakup of
the three ACS corresponds quite closely to the entropy of
the flow, h, dropping below hTN, the lower bound based
on the presence of a braid isotopic to that in Fig. 1(d).

Periodic motion of ‘ghost rods’ can reveal and quantify
the presence of exponential stretching and folding in the
surrounding flow without requiring detailed information
about the full flow field. The standard approach to iden-
tifying chaos relies on long-time observations of chaotic
motion. This topological approach identifies chaos based
on relatively short-time observations of regular motion.
As we have demonstrated, these ghost rods need not be
found by direct observation of invariant objects — peri-
odic motion of ACS can reveal the topological structure
needed for application of the TNCT. Thus, identification
and quantification of chaos can be based on limited data
regarding the regular motion of finite regions of the flow
that move together for only a finite time [31].

While we have discussed the role of ACS as ghost
rods in the context of fluid stirring, many dynamical
systems can be cast as periodic homeomorphisms of a
disk and thus viewed as a flow. AIS have been observed
in numerous systems [28, 32, 33], even those exhibiting
stochastic behavior [34]. Our results show that the rel-
ative motion of distinct components of an AIS, i.e. the
ACS, can be viewed as a braid in space-time and ana-
lyzed using the Thurston–Nielsen classification theorem.
This connection between set-oriented methods and the
TNCT promises to provide a powerful tool for investi-
gating transport in a variety of dynamical systems.
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