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We propose a waveguide QED system where two single photons of distinct frequency or polar-
ization interact strongly. The system consists of a single ladder-type three level atom coupled to a
waveguide. When both optical transitions are coupled strongly to the waveguide’s mode, we show
that a control photon tuned to the upper transition induces a π phase shift and tunneling of a probe
photon tuned to the otherwise reflective lower transition. Furthermore, the system exhibits single
photon scattering by a classical control beam. Waveguide QED schemes could be an alternative to
high quality cavities or dense atomic ensembles in quantum information processing.

PACS numbers: 42.50.-p, 42.50.Ct, 42.50.Ex, 32.80.Qk

Strong nonlinear interactions between two distinct op-
tical signals at the few photon level are of foremost im-
portance in quantum information science [1]. The ulti-
mate goal is to build quantum gates to control the trans-
mission and phase of a single photon with another pho-
ton at a different frequency or polarization. While reso-
nant interactions in dense atomic ensembles [2–4] exhibit
nonlinearities considerably larger than those of conven-
tional materials, they require a large number of atoms
with long lifetime dark states at cold temperatures to
control single photons [5]. Meanwhile, cavity-enhanced
QED systems can enable nonlinear interactions at the
single atom level [6], which has led to the demonstra-
tion of photon blockade [7–9] and proposal of single pho-
ton switches [10]. Recently, a number of authors identi-
fied that a two-level atom coupled to a waveguide mode
can induce strong interactions between degenerate pho-
tons [11, 12]. Unlike cavity-based enhancements, which
control photon interactions at discrete modes, waveguide-
based enhancements access a one dimensional contin-
uum of reflection and transmission modes, making them
ideal for nonlinear frequency mixing of single photons.
While waveguide-QED has also been proposed to control
photon transmission by the quantum state of a Λ-type
atom [13], the scheme relies on a classical control beam
to realize a single photon switch.

In this letter we propose an elementary waveguide-
QED scheme to achieve a nonlinear interaction of two
frequency or polarization distinct single photons at the
ultimate limit. The interaction can occur at a single
ladder- or V-type three level atom, where here, we con-
sider the ladder configuration. Λ-type atoms [14] are not
suitable because the shared upper state inhibits simulta-
neous strong coupling of both optical transitions to the
waveguide. Figure 1 shows a schematic of the photon
scattering processes and the atom’s energy level diagram.
A stream of waveguide photons with two different fre-
quencies (polarizations) are applied in resonance with the
atomic transitions. The lower atomic transition |a〉 → |b〉
is used as the quantum probe channel, whereas the upper
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FIG. 1. (color online) Two-photon scattering on a ladder-type
atom coupled to waveguide. (a) Schematic of the system. (b)
Energy level diagram.

transition |b〉 → |c〉 is used as the quantum control chan-
nel. When the atom is initially prepared in the ground
state |a〉, in the absence of the control photon b, photon
a will be reflected by the atom. However, in the presence
of the control photon b, cascaded two-photon excitation
and emission is allowed, which can result in the transmis-
sion of photon a through the reflective barrier. The dis-
tinguishing feature of waveguide QED is the strong reso-
nant interference of scattered and incident photons by the
atomic transition of a single atom [15]. Strong coupling
between the atom and the waveguide mode dominates
over coupling into other radiative or non-radiative chan-
nels and ensures that the incident and scattered waves
have the same amplitude, inducing strong interference.
If two transitions of the same atom are strongly coupled
to the waveguide mode, not only single photon, but also
two photon cascade emission can induce strong interfer-
ence of the scattered waves, resulting in strong intensity
correlation patterns.

In order to understand the physics of this two-photon
scattering process, we analyze the second order intensity
correlations for transmitted and reflected photons. We
show that when both atomic transitions are strongly cou-
pled to waveguide modes, photon a will be transmitted
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on the condition that photon b is also transmitted, which
manifests conditional photon tunneling. Moreover, we
show that reflected photon a acquires an extra π phase
shift if photon b is also reflected, which could be used for
quantum logic.

We proceed to calculate the two-photon intensity cor-
relation functions. The Hamiltonian for the scheme
shown in Fig. 1, in the interaction picture, is given by

V = ~

∑

k

g∗kσ̂cbâke−i∆kt+~

∑

q

g∗q σ̂bcâqe
−i∆qt+h.c. (1)

Here gk and gq are single photon coupling coefficients,
∆k = νk−ωbc and ∆q = νq−ωab are frequency detunings,
âk and âq are the annihilation operators, νk and νq are
the frequencies of the photons with wavenumbers k and
q. σ̂ij is the atomic flip operator, ωij is the frequency of
the |i〉 → |j〉 transition.

We assume that the atom is initially prepared in the
ground state |a〉, and the electromagnetic field has single
photons in modes k0 and q0, so that Akq(t = −∞) =
1k,k0

1q,q0
. The corresponding atom field state is |Ψ(t)〉 =

C(t)|0, c〉 +
∑

Bk(t)|1k, b〉 +
∑

Akq(t)|1k, 1q, a〉.
The Schrodinger equation for the probability ampli-

tudes Akq(t), Bk(t) and C(t) is given by

∂

∂t
C = −i

∑

k

g∗kBke−i∆kt

∂

∂t
Bk = −igkCei∆kt − i

∑

q

g∗qAkqe
−i∆qt

∂

∂t
Akq = −igqBkei∆qt.

(2)

In order to determine the state of the atom and radia-
tion field, we solve this set of equations analytically using
the Weisskopf -Wigner approximation

Akq(t) = Akq(−∞) −

∫ t

−∞

dt′gq

∑

q′

g∗q′Akq′ (−∞) exp (i(νq − νq′ )t′)

−i∆q′ + Γab

2

+

∫ t

−∞

dt′gqgk

∑

k′q′

g∗q′g∗k′Ak′q′(−∞) exp(i(νq + νk − νq′ − νk′ )t′)

(−i∆q′ + Γab

2 )(−i∆q′ − i∆k′ + Γbc

2 )(−i∆q′ − i∆k′ + i∆k + Γab

2 )
(3)

Here Γij is the spontaneous decay rate of the |i〉 → |j〉
transition. Three terms are readily identifiable on the
RHS of Eq. (3): The first represents the input state; the
second describes single photon scattering on the |a〉 → |b〉
transition; and the third describes energy conserving two-
photon excitation and emission processes.

Next, we proceed to calculate the two-photon wave-
function Ψxy(t, zb, za) = 〈0, a|ây(t, za)b̂x(t, zb)|Ψ(t)〉 at
two detectors at positions za and za for time t. Here,
the mode indices x or y denote forward ’+’ or backward
’−’ propagation direction, b̂±(t, z) =

∑

±k>0 âke−iνkt+ikz

and â±(t, z) =
∑

±q>0 âqe
−iνqt+iqz are electric field op-

erators for photons a and b, propagating in ’+’ or ’−’
direction. In general, the two-photon wave-function for
two transmitted photons is given by

Ψ++(t, za, zb) = e−iνk0
t+ik0zb × e−iνq0

t+iq0za×
(

1 + rq0
− rq0

Γ′

bc

2 θ(τ)ei∆q0
τ−

Γab
2

τ

−i∆q0
− i∆k0

+ Γbc

2

)

,
(4)

where Γ′
ij is the spontaneous decay rate of the |i〉 → |j〉

transition into the waveguide mode, θ(τ) is the Heaviside
step function, τ = zb/Vb − za/Va is the propagation time
difference, Va,b is the group velocity of photon a or b and

rq0
= −

Γ′

ab

2 /(−i∆q0
+ Γab

2 ) is a single photon reflection

coefficient for the |a〉 → |b〉 transition.
Now we consider the case when the incoming photons

are in resonance with the atomic transitions. For the sta-
tionary process we obtain the two-photon intensity cor-

relation function as G
(2)
xy (τ) = |Ψxy(t, zb, za)|2 where,

G
(2)
++(τ) =

(

1 − βab + βabβbcθ(τ)e−
Γab
2

τ
)2

(5a)

G
(2)
+−(τ) =

(

−βab + βabβbcθ(τ)e−
Γab
2

τ
)2

(5b)

G
(2)
−−(τ) = G

(2)
−+(τ) =

(

βabβbcθ(τ)e−
Γab
2

τ
)2

. (5c)

Here βij = Γ′
ij/Γij is the spontaneous emission coupling

factor to a waveguide mode for the |i〉 → |j〉 transition.
Figure 2 shows the second order intensity correlations

for transmitted and reflected photons. These correla-
tions are a result of Fano-type interference between pho-
ton pairs interacting with the atom via three possible
pathways as shown in Fig. 2(a). In the first pathway the
atom remains unperturbed and both incident photons are
transmitted, corresponding to the unity term in Eq. (5a).
In the second pathway the atom’s lower transition is ex-
cited by incident photon a while photon b is transmitted
without change. The scattered photon has amplitude
βab with a π phase shift relative to the incident wave.
This process corresponds to the 2nd term in Eq. (5a)
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FIG. 2. (color online) (a) The interference of two-photon
scattering processes for an atom in waveguide. The vertical
arrows denote the atomic excitation and emission processes.
The filled and empty dots indicate the final and intermediate
atomic states respectively. The horizontal straight and wavy
arrows denote input and scattered photons respectively. The
large ’+’ and ’−’ signs indicate constructive and destructive
interference. (b) Two-photon intensity correlations between
transmitted or reflected photons b±(t) and a±(t + τ ), calcu-
lated for different βab and βbc factors. If βab = βbc = 1, strong
photon interaction results in the forward scattering of photon
a immediately after transmitted photon b+ is detected.

and the 1st term in Eq. (5b). In the limit βab → 1, the
incident and scattered photons interfere and completely
suppress uncorrelated transmission of photon a. In the
third pathway, both incident photons excite the atomic
cascade |a〉 → |b〉 → |c〉 followed by correlated photon
pair emission. The two-photon correlation has an ampli-
tude equal to βabβbc that persists for time delays up to
the atomic-dephasing time as given by the last terms of
Eqs. (5a), (5b and 5c). Since photon b also acquires a π
phase shift, photon pair cascade emission has a total 2π
phase shift. It can also be viewed as if emitted photon
a acquires an extra π phase flip on the condition that
transmitted or reflected photon b is detected. This phase
flip leads to rich correlations from the interference of the

three pathways, shown in Fig. 2(b). Specifically, when
photon b is transmitted and βbc → 1, photon a’s reflec-
tion probability is very low during the time period 1/Γab.
In the limit βabβbc → 1, photons a and b both have a high
probability of being transmitted together. We conclude
that this system is a conditional single photon switch.

Fig. 2(b) also shows the correlation functions under
non-optimal coupling conditions. Low βbc < 1 reduces
the probability of conditional photon a transmission and
increases its reflection. Moreover, low βab < 1 introduces

a large background to G
(2)
++(τ) due to uncorrelated trans-

mission of photon a by the atom. These effects degrade
the performance of the system as a single photon switch.

In order to broaden our understanding of the scatter-
ing processes under strong coupling to waveguide mode,
we also consider single photon scattering on one of the
atomic transitions in the presence of a classical control
beam driving the other transition as shown in Fig. 3. We
note that the absorption at a quantum dot in the weak
coupling regime has been observed before [16]. Firstly,
we consider the case shown in Fig. 3(a,b). Figure 3(b)
shows the transmission of a single photon as a function
of its frequency detuning (∆qA

). We take Γbc = Γab and
βab = 1, to ensure high fidelity switching characteristics.
Similar to the classical EIT scheme for dense atomic en-
sembles, a strong control beam, i.e. |Ω|2 > ΓabΓbc, tuned
in resonance with the |b〉 → |c〉 transition creates a trans-
parency window for a single photon. Here and thereafter,
Ω is the Rabi frequency of the control beam. In order to
avoid intensity saturation effects, the incident single pho-
ton rate should be much smaller as compared to Γab.

A quite different situation occurs when the control and
single photon transitions switched [Fig. 3(c)]. We as-
sume that βbc = 1 and the atom is prepared in state |a〉
at t = 0. Figure 3(d) shows the instantaneous intensities
for transmitted and reflected signals and the occupational
probability (〈σbb〉) of state |b〉 as a function of time cal-
culated for different Ω ≫ Γab. The transient response
of this system is characterized by the two atom-field cou-
pling strengths: the atom flopping frequency of the lower
transition, Ω, for the strong control beam; and the field-
atom energy exchange rate at the upper transition, Γbc,
for the single photon. The control beam modulates the
population of state |b〉, leading to a periodic modulation
of upper state spontaneous emission. If the lower transi-
tion is driven slowly, i.e. Ω ≪ Γbc, the reflection function
follows the atomic population in state |b〉, resulting in
100% modulation of the input signal. However, when
Ω ≫ Γbc, photon scattering is suppressed as the occu-
pation probability of state |b〉 oscillates faster than the
single photon-atom coupling rate. Therefore the trans-
mission curve shows only small oscillations around unity.
We also note that although the cycle-average scattered
intensity is equal to the incident one, the transmitted in-
stantaneous intensity can be higher than 100% due to en-
ergy exchange between the classical and quantum beams
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FIG. 3. (color online) (a, b) EIT-type single photon switch.
(a) Energy level diagram. (b) Transmission vs. frequency
detuning of single photon a. (c, d) Intensity modulation on
a single atom. (c) Energy level diagram; the control and
single photon beams are resonant with the lower and upper
transitions. (d) Instantaneous intensities for transmitted and
reflected photons and occupational probability 〈σbb〉 of state
|b〉 as a function of time at different Ω.

through the atom and relatively slow energy circulation
on the upper transition.

This story would not be complete without a discussion
of experimental implementation. The proposed schemes
require a robust ladder-type atom and a waveguide con-
finement mechanism to achieve a strong atom-field cou-
pling. Ladder-type atoms are readily available in techno-
logically relevant solid states systems, for example, as a
subset of the four level fine structure of InAs/GaAs quan-
tum dots [16]. While V -type systems [17] are also viable
and reveal similar single photon switching behavior, the
ladder-type configuration of InAs/GaAs quantum dots is
attractive due to large (several nm) wavelength separa-
tion between bi-exciton transitions, which is crucial for
efficient frequency filtering. For slow modulation case of
Fig. 3(d) NV color centers in diamond can be used as they
have a long lifetime microwave transition cascaded with
an optical one. In choosing a suitable atomic system it
is important to account for additional dephasing mecha-

nisms beside spontaneous decay that can adversely affect
the amplitudes and phase of both uncorrelated and cor-
related single photon scattering. Strong atom-field cou-
pling within a waveguide environment can take advantage
of a number of schemes proposed recently: for example, β
factors as high as 85% can be obtained in photonic crystal
waveguides [18]; and plasmonic waveguides promise even
stronger coupling [19–21], provided the problem of emis-
sion quenching near metal surfaces can be avoided. How-
ever, even a tightly focussed beams [22, 23] are sufficient
to yield high β factors, so elaborate schemes could be
avoided. Approaches using semiconductor waveguides,
compatible with quantum dot technologies, are particu-
larly promising. For example, quantum dots with radial
dipole orientation at the center of a dielectric nanowire
waveguide [24, 26], would allow β factors of 90% [25] and
slot waveguides [27], give even higherβ factors reaching
96%, even when averaged over all dipole orientations [28].

In summary, we showed that strong coupling of multi-
ple atomic transitions to waveguide enables strong inter-
action of distinct single photons. We believe the proposed
schemes open new directions to engineer photonic quan-
tum logic devices without the use of high Q and small
mode volume cavities or dense atomic ensembles.
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