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Interacting lattice bosons at integer filling can support two distinct insulating phases, which are
separated by a critical point: the Mott insulator and the Haldane insulator[1]. The critical point
can be gapped out by breaking lattice inversion symmetry. Here, we show that encircling this
critical point adiabatically pumps one boson across the system. When multiple chains are coupled,
the two insulating phases are no longer sharply distinct, but the pumping property survives. This
leads to strict constraints on the topology of the phase diagram of systems of quasi-one dimensional
interacting bosons.

In the early 1980s, Thouless [2] made the surprising
observation that certain band insulators can sustain dis-
sipationless and quantized charge transport by adiabatic
pumping. The classic example of this effect is seen in
a half filled tight binding chain with two sites per unit
cell[2]. As parameters of the hamiltonian are changed
adiabatically along a closed loop around the single gap-
less point in the two parameter space, a unit charge is
transported through the chain. This simple observation
had interesting implications to other systems. For exam-
ple, it was quickly realized [3, 4], that Laughlin’s original
argument for the quantization of the Hall conductance
may be formulated in the same mathematical terms as
the pumping problem. In connection with more recent
developments, the ideas of topological pumping through
band insulators were precursors of the theoretical[5–8]
and subsequent experimental[9, 10] discovery of topolog-
ical band insulators. Indeed, the Z2 topological invari-
ant associated with these systems can be reformulated in
terms of adiabatic pumping [11].

Although quantized pumping has been discussed pri-
marily in the context of non–interacting fermions, the
concept is much more general. The pumped charge can
be formulated in terms of a topological Chern number as-
sociated with parallel transport of the many-body wave-
function in Hilbert space[3, 4]. In particular this for-
mulation ensures robustness of the quantization to dis-
order and interaction and also enables direct extension
of the concepts to spin pumping in spin-1/2 chains[12].
All these extensions are adiabatically connected to the
case of a band insulator, either directly or via a Jordan-
Wigner transformation.

In this paper we show that a natural model of interact-
ing lattice bosons at integer filling, which is not directly
mappable to a band insulator, allows quantized transport
through Mott insulating states by adiabatic pumping.
The existence of non trivial loops in the gapped regions
of parameter space defines a topological index, which may
be associated with the gapless (superfluid) phases they
surround. It also sets constraints on the structure of the
phase diagram, or more precisely, on the topology of the
gapless regions within it.
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FIG. 1: Phase diagram topology. (a) Phase diagram of a single
chain. The parameter g tunes across the Haldane (HI) to
Mott (MI) insulator transition. These two phases are sharply
defined only in presence of inversion symmetry (λ = 0). A
closed adiabatic path which encircles the critical point (path
A) entails pumping of a single boson across the insulator.
(b) Schematic phase diagram of two coupled chains. The MI
and HI phases can be adiabatically connected via the dashed
path. However, since path 1 pumps one boson per chain, it
cannot be collapsed adiabatically to a point without crossing
the gapless region. Path 2 entails pumping of one boson per
two chains.

The basic model we consider is an extended Bose Hub-
bard model (EBHM), at integer filling, on coupled chains

H =
∑
α

[Hα +Hλ,α +H⊥,α] , (1)
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where

Hα =
∑
j

[
−t(b†α,jbα,j+1 + H.c.) +

U

2
nα,j(nα,j + 1)

]
+ V

∑
j

nα,jnα,j+1, (2)

is a single chain hamiltonian defined on chain α. b†α,j
creates a boson at position j in chain α, and nα,j ≡
b†α,jbα,j . The hamiltonian

Hλ,α = λ
∑
j

[
nα,jb

†
α,jbα,j+1 − nα,j+1b

†
α,j+1bα,j + H.c.

]
,

(3)
is a perturbation that breaks the bond-centered inversion
symmetry of Hα. Finally,

H⊥,α =
∑
j

[−t⊥(b†α,jbα+1,j + H.c.) + V⊥nα,jnα+1,j ] (4)

denotes interchain coupling. The model (1) or re-
lated hamiltonians can be realized with ultracold dipo-
lar molecules or atoms with optically induced dipole
moments[13]. Crucial for our analysis is the presence of
the perturbation λ, which breaks the inversion symmetry
of the chain. It will be naturally generated if the under-
lying optical potential is not symmetric under inversion.
Such a lattice potential can be produced by two lasers,
one of which has double the wavelength of the other. In
one extreme limit this configuration gives rise to a lat-
tice of double well potentials[14, 15], which indeed are
not inversion symmetric in general.

A single chain – We have shown previously, that the
EBHM on a single chain (Eq. 2) exhibits a quantum
phase transition from a Mott insulating (MI) state to
a novel gapped phase, which we termed a “Haldane
insulator” (HI), upon increasing the nearest neighbor
interaction[1]. Both phases are completely disordered in
the sense that they do not break any symmetry of the
Hamiltonian. The new state is analogous to the Hal-
dane gapped state of spin-1 chains, and is characterized
by a string order parameter, albeit in the boson density
rather than the spin. It was later shown [16–19], that
the distinction between the HI and MI phases is pro-
tected by lattice inversion symmetry. A perturbation,
such as Hλ,α above, which breaks the inversion symme-
try about a bond, opens a gap at the HI–MI transition
and allows adiabatic connection between the two gapped
phases. Thus, in the two parameter space (V, λ) the tran-
sition becomes an isolated critical point. We shall argue
that an adiabatic passage around the critical point entails
transport of a single boson through the chain.

To see this we turn to the long wavelength description
of the extended Hubbard chain, with the inversion sym-
metry breaking perturbation λ. Near to the HI–MI phase
transition it is given by the following Sine-Gordon field

theory[16]

H0 =
u

2π

∫
dx
[
K (∂xθ)

2 +
1
K

(∂xφ)2

−g cos(2φ)− λ sin(2φ)
]
, (5)

with the Luttinger parameterK in the regime 1/2 < K <
2. The parameter g is in general a complicated function
of the microscopic interactions. g(U, V, t) > 0 in the MI,
g < 0 in HI and vanishes on the critical line separating
these two phases. A naive continuum limit gives the ap-
proximate dependence g ≈ U/2−V [16]. Here ∂xφ/π = ρ
is the long-wavelength component of the boson density,
θ is its dual field satisfying [∂xφ(x), θ(x′)] = iπδ(x− x′),
and u is the sound velocity. Note that under inversion,
ρ(x)→ ρ(−x), therefore φ(x)→ −φ(−x), which makes it
clear that the λ term is odd under inversion. The last two
terms can be written compactly as g̃ cos(2φ − χ), where
g̃ =

√
g2 + λ2 and χ = arctan(λ/g). In the regime of in-

terest K < 2, making the cosine term relevant. cos(2nφ)
and sin(2nφ) with n > 1 may also appear in H0, but
we assume that these terms are irrelevant at the HI–MI
critical point, (λ = 0, g = 0).

The critical point is entirely surrounded by a gapped
state (see Fig. 1a) in which the field φ is essentially locked
to the value χ/2. Therefore an adiabatic change of the
system parameters, which takes it in a counter clock-
wise loop around the critical point incurs a continuous
change of φ(x) by π everywhere in space. By definition
of the field, φ(x) suffers a π shift every time a particle
passes through x. The last observation implies the trans-
port of exactly one boson from left to right in a counter-
clockwise loop. Another way to derive the quantization
is to refermionize the field theory (5). The quantized
charge can be computed directly for K = 1, which maps
to free fermions [20]. It follows for other values of K by
adiabatic continuity.

To enable continuous pumping, the chain must be con-
nected to gapless reservoirs. This arises naturally in a
realization using an optical lattice and a harmonic trap
in which the incompressible phase will be flanked by su-
perfluid wings. The adiabaticity condition needed to en-
sure quantized pumping is χ̇ � ∆ ∼ Λ(g̃/Λ)1/(2−K)[20],
where ∆ is the gap along the cycle. Λ, the ultravio-
let cutoff of the continuum theory is of the order of the
bandwidth 2t.

The topological character of the pumped charge makes
it robust to small perturbations of the hamiltonian[3]. In
particular, for the case of many weakly coupled chains,
driving all chains adiabatically along loop A still pumps
one boson per chain. For arbitrary coupling between
chains, we shall see that the quantization of the pumped
charge imposes stringent constraints on the topology of
the phase diagram in the enlarged parameter space. We
demonstrate this below using the example of two cou-
pled chains and then comment on generalizations to any
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FIG. 2: Phase diagram of the spin-1 two–leg ladder defined in
Eq. (6) as a function of U , t⊥, and λ, calculated using DMRG.
We have fixed V⊥ = 2t⊥. For t⊥ = λ = 0, there are two
distinct gapped phases, the HI and MI, which are separated
by a critical point at U ≈ 1. Upon turning on t⊥, the critical
point expands to a finite superfluid (SF) region, and the two
gapped phases are not sharply distinct. For λ > 0, the MI–HI
critical point at t⊥ = 0 becomes gapped. The gapless region
shrinks upon increasing λ, but does not disappear. The phase
diagram has the same topology as in Fig. 1b.

number of coupled chains.

Two coupled chains. The critical point at (g, λ) = 0
is unstable to weak tunnel coupling t⊥ between a pair
of chains[16]. Using an RG analysis we have shown that
the critical point expands to a gapless phase (Luttinger
liquid) with radius ∼ tη⊥ around the origin in the space
(g, λ), where the precise exponent η is given in ref. [16].

How is the pumped charge associated with an adia-
batic cycle around the critical point, affected by turn-
ing on the inter-chain coupling t⊥? As long as the path
encircles the gapless region from the outside, then it is
adiabatically connected to the non–trivial pumping cycle
around the HI–MI critical point of the decoupled chains.
The topological Chern number cannot change and hence
the pumped charge must remain quantized at one boson
per chain upon encircling the gapless region. Below we
address the evolution of the gapless region for increasing
inter–chain coupling beyond weak-coupling.

To understand how the phase diagram evolves with
stronger values of inter-chain coupling we should take
into account another crucial fact. For two chains there is
no sharp distinction between the HI and MI phases, even
in the presence of inversion symmetry (λ = 0)[18]. This
means that the HI and MI phases of two decoupled chains
can be connected adiabatically by a path in hamiltonian
space going through a region with non zero inter–chain
coupling. We demonstrate this explicitly using a Density
Matrix Renormalization Group (DMRG) calculation of

the following spin-1 ladder model:

Hspin =
∑
i,α

[
V Szα,iS

z
α,i+1 − t(S+

α,iS
−
α,i+1 + H.c.) + U(Szα,i)

2

+ λ(Szα,iS
+
α,iS

−
α,i+1 − S

z
α,i+1S

+
α,i+1S

−
α,i + H.c.)

]
+
∑
i

[
V⊥S

z
1,iS

z
2,i − t⊥(S+

1,iS
−
2,i + H.c.)

]
(6)

This model can be thought of as a truncation of the
EBHM (1) to the space of the three lowest occupation
states ni = Szi + 1[21]. Crucially, the two models have
the same low energy limit[16, 22].

Fig. 2 shows the phase diagram of the model (6), as a
function of t⊥, λ and U , which is used to tune the MI–HI
transition. (U is related to g in Eq. 5 by g ∝ U − Uc,
where Uc is the location of the MI–HI transition.) We
have fixed V = 2t and V⊥ = 2t⊥. The phase diagram was
determined by measuring the spin gap, ∆s = E(S = 1)−
E(S = 0), and extrapolating it to the thermodynamic
limit. System sizes of up to L = 64×2 were used, keeping
m = 200 states.

We see in Fig. 2, that upon increasing the inter-chain
coupling t⊥ and V⊥ the HI-MI critical point first expands
to a gapless region as predicted by the weak coupling the-
ory [16], but collapses at stronger coupling, allowing for
an adiabatic connection between the HI and MI states.
The fact that the gapless region ends may at first seem
contradictory to our previous assertion that an adiabatic
loop around this region in the space (g, λ) entails pump-
ing of one boson per chain. If the gapless region ends, and
the loop can be collapsed adiabatically to a trivial point
in the gapped state with increasing inter-chain coupling,
how can it sustain a non-trivial Chern number?

To avoid this contradiction, the gapless region must
split into two branches in the ±λ directions, which ei-
ther extend indefinitely, or terminate discontinuously on
a 1st order transition plane. With this topology, a loop
surrounding the original critical point at t⊥ = 0 can-
not be collapsed adiabatically into a point. The numeri-
cally obtained phase diagram in Fig. 2 is consistent with
these considerations: although the superfluid region in
the λ = 0 plane is finite, it has two branches which ex-
tend in the ±λ directions. These branches do not termi-
nate up to the largest values of λ we examined (in [20]
we present results for higher λ values).

Given the topology of the gapless phase it is natu-
ral to ask what is the pumped charge associated with
a path surrounding only one of the two branches at ei-
ther positive or negative λ (path 2 in Fig. 1b). Such a
path has no counterpart in the single chain system and
it cannot be continuously deformed into a loop that sur-
rounds an isolated critical point. Nevertheless, we ar-
gue that the Chern number associated with this path
is determined by the topological character of the HI-MI
critical point. A simple way to approach this problem
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is to note that two loops, each encircling one of the two
branches, can be deformed into a single loop which encir-
cles both branches. Such a loop corresponds to pumping
of two bosons as discussed above. Therefore, by symme-
try of the ±λ branches, each of the isolated loops entails
pumping of one boson along the ladder, or half a boson
per chain.

The distribution of quantized charge among different
loops in parameter space can be succinctly represented
in terms of a fictitious quantized magnetic flux running
through gapless regions in the three dimensional param-
eter space. Two flux quanta, one for each chain, are in-
serted through the isolated HI-MI critical point in the
t⊥ direction, and must split evenly between the two
branches at ±λ. The quantized pumping therefore de-
fines a topological index, the fictitious quantized-flux,
that is associated with the gapless phases.

More than two chains – Without inter-chain coupling,
N parallel chains are just N copies of the single chain
problem, and so an adiabatic cycle around the critical
point implies pumping of N bosons along the decoupled
chains. As before, this charge cannot change suddenly
with the introduction of inter-chain coupling t⊥. Hence,
in the extended parameter space the critical point at the
origin t⊥ = 0 is a source of N quanta of the fictitious
flux. The gapless phase at finite t⊥ may branch out, as
in the case of two chains, while the fictitious flux running
through all the branches must add up to exactly N .

There is another topological constraint on the branch-
ing of the gapless phase with increasing t⊥. From the
construction of Ref. [18, 19], follows a sharp distinction
between the Haldane insulator and the Mott insulator
phase on any ladder with an odd number of chains. That
is, without breaking inversion symmetry, 2N + 1 decou-
pled chains in the HI phase cannot be connected adiabat-
ically to decoupled chains in the MI by an adiabatic path
going through finite t⊥, in contrast to the two leg case
considered above. Therefore in a ladder with odd num-
ber of legs the gapless phase must persist indefinitely on
the plane with inversion symmetry, i.e λ = 0.

Conclusions– Topological properties of matter are usu-
ally associated with gapped regions of the phase dia-
gram. Here, we have shown that in a model of interacting
bosons, it is natural to associate a topological “flux” with
the gapless (superfluid) regions, which is defined by the
pumped charge upon encircling these regions adiabati-
cally. This property can be argued to be more profound,
in the sense that the gapped phases discussed here are
only distinct from each other as long as certain symme-
tries (e.g. inversion symmetry) are preserved, while the
topological flux associated with the gapless region is ro-
bust against arbitrary particle number conserving pertur-
bations. This principle can be used to impose constraints
on the topology of the phase diagram; for example, it
implies that a gapless region which carries a non-zero
topological flux cannot terminate.

Similarly, topological insulators in two and three di-
mensions are only well-defined as long as time-reversal
symmetry is preserved. However, the gapless region sepa-
rating the topologically trivial and non-trivial phase may
carry a topological “flux”, which remains well-defined
even when time-reversal symmetry is broken. That can
hopefully shed new light on the nature of topological
insulators.[23]
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