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We show how the time-continuous coherent state path integral breaks down for both the single-site
Bose-Hubbard model and the spin path integral. Specifically, when the Hamiltonian is quadratic
in a generator of the algebra used to construct coherent states, the path integral fails to produce
correct results following from an operator approach. As suggested by previous authors, we note that
the problems do not arise in the time-discretized version of the path integral.
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Path integrals are widely known for being an alternate formulation of quantum mechanics, and appear in many
textbooks as a useful calculational tool for various quantum and statistical mechanical problems (e.g., perturbative
expansions, non-perturbative techiques including the instanton method, and effective theories [1–3]). From their
inception, there has been the problem of writing down a path integral for any system that can be described by
a Hilbert space equipped with a Hamiltonian. One way to approach this problem is with what is known now as
the generalized coherent state path integral [4, 5] which generalizes the coherent state path integral for a harmonic
oscillator. The key observation with path integration [2] is that, given a Hamiltonian H , the propagator, e−itH , at
some time t can be broken up into N slices, (e−itH/N )N , and in between each multiplicative term one inserts an
(over-)complete set of states parametrized by a continuous parameter. If we take N → ∞ we get the time-continuous
formulation. This formulation of path integrals, applied to coherent states, has become widely and routinely used in
many areas of physics (see the many papers collected in [6]), yet despite the many successes of path integrals, they
have been on very shaky mathematical grounds (for a small “slice” of this history, see [7]).

Glauber coherent states [8] are usually understood as the most classical states associated with the harmonic os-
cillator. They obey the classical equations of motion for a harmonic oscillator and are minimal uncertainty states.
Perelomov and Gilmore [9, 10] extended the definition of coherent states to Lie algebras other than the Heisenberg
algebra (i.e., the harmonic oscillator algebra). Since then, these “generalized” coherent states have been used in a
number of applications (see [11, 12]). In particular, the coherent states form an overcomplete basis (with a continuous
label) which is a necessary ingredient for the construction of a path integral. For the harmonic oscillator, coherent
states are represented by a complex number, but for coherent states constructed with su(2) (spin), they are points on
the Bloch sphere, S2.

For the case of the harmonic oscillator, it is commonly known that one can easily go between the normal-ordered
Hamiltonian (all annihilation operators commuted to the right) and the coherent state path integral [1]; this is due
to the fact that coherent states are eigenvectors of the annihilation operator. For the general coherent state path
integral, the “classical” Hamiltonian in the path integral is just the expectation value of the quantum Hamiltonian
with a coherent state. This prescription results in some notable exactly solvable cases, but all such cases involve
non-interacting terms which are essentially linear in the algebra generators used to construct the coherent-states.
When the Hamiltonian involves terms that are non-linear in generators (interactions), this prescription fails, as this
letter demonstrates.

In previous literature, the spin coherent state path integral has sometimes produced (quantitatively) incorrect
results [13–17] unless the time-discretized version is employed [16, 18]. These problems with the time-continuous
path integral were mostly solved by Stone et al. [19] by identifying an anomaly in the fluctuation determinant which
added an extra phase to the semi-classical propagator. Kochetov had also found this phase in a general context [20].
Furthermore, Pletyukhov [21] related the extra phase in the spin path integral back to Weyl ordering the Hamiltonian
in the case of the harmonic oscillator (in the simplest case, Weyl ordering corresponds to symmetrically ordering
annihilation and creation operators). Additionally, Weyl ordering has been considered in the Bose-Hubbard case in
[22]. Unfortunately, this solution does not explain the present breakdown under consideration.

In this letter, we outline another problem with the time-continuous coherent state path integral. This problem man-
ifests itself in two simple examples: (i) the spin-coherent state path integral and (ii) the harmonic oscillator coherent
state path integral (in particular, the single-site Bose-Hubbard model). The single-site Bose-Hubbard Hamiltonian
is a minimal model that demonstrates the problem with the normal-ordered path integral. However, the problem
itself is more general than the toy model considered here and clearly persists in more complicated models, including
lattice Bose-Hubbard models. We use an exact method of calculating the partition function mathematically developed
by Alekseev et al. [23] (and more recently used by Cabra et al. [24] for the spin path integral with H = Sz), and
demonstrate that the exact result differs from the correct partition function in the cases of both normal-ordering of
operators (as prescribed by most textbooks) and when using Weyl ordering (i.e., it cannot be accounted for with the
phase anomaly found by Solari and Kochetov [18, 20] and elaborated on by Stone et al. [19]).

We begin with the coherent state path integral for spin with the standard SU(2) algebra defined on the operators
{Sx, Sy, Sz} with [Si, Sj ] = iǫijkSk, and we define our Hilbert space by taking the matrix representation of the SU(2)
group in (2s + 1)-by-(2s + 1) matrices (s being the spin of the system). Irrespective of the algebra, we can in general
define a Hermitian matrix H that acts on states in our Hilbert space, and this will be our Hamiltonian. Usually, H
is polynomial of algebra generators.

If |s〉 is the maximal state of Sz in our spin-s system, then we can define spin-coherent states as |n〉 = e−iφSze−iθSy |s〉
where (θ, φ) are coordinates on the sphere S2 along the unit vector n (i.e., a point on the standard Bloch sphere).
These coherent states are overcomplete such that 2s+1

4π

∫

S2 dn |n〉 〈n| = 1 where dn = dφd(cos θ) is the standard
measure on S2. Using this continuous, overcomplete basis, one can derive the standard path integral for the partition
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function for spin from Z = tr e−βH in the standard way [1] discussed in the introduction:

Z ′ =

∫

Dn(τ) exp

{

−
∫ β

0

dτ [−〈n(τ)|∂τn(τ)〉

+ 〈n(τ)|H |n(τ)〉]} . (1)

We call the partition function as given by the time-continuous path integral Z ′ in order to distinguish it from
Z = tr e−βH since we will find that in general they may not agree. The path integral is over all closed paths (since
it is the parititon function). The first term in the action for Eq. (1), 〈n|∂τn〉, is the Berry phase term and in (θ, φ)
coordinates −〈n|∂τn〉 = −is(1 − cos θ)∂τφ.

We assume 〈n|H |n〉 = H(cos θ) for some function H(x) (this is true if and only if H is diagonal). This puts
the φ dependence of the action solely in the Berry phase term of the action. We then integrate the Berry phase
term by parts; the boundary term is just ∆φ(1 − cos θ(0)) with ∆φ = φ(β) − φ(0) = 2πk for any integer k and
cos θ(β) = cos θ(0) since our paths are closed. We must sum over the different topological sectors defined by the
integer k (i.e., how many times φ wraps around the sphere). Thus, our only φ dependence is multiplying dcos θ

dτ from

integrating by parts, and we use standard identity for functional integrals
∫

Dφ e−i
R

β

0
dτ φ(τ)f(τ) = δ(f), to get that

cos θ must be constant (i.e., dcos θ
dτ = 0). This δ-function allows us to do the path integral over D(cos θ), except for

the initial value which we call x := cos θ(0). Taking all of this into account, the path integral can then be written as

Z ′ =
∞
∑

k=−∞

∫ 1

−1

dx e2πiks(1−x)−βH(x). (2)

The sum over k can be evaluated as a sum of delta functions of the form δ(s(1 − x) − n) for all integers n. Since x
is in the interval −1 to +1, only finitely many n contribute (n = 0 to n = 2s to be exact). We can rewrite the sum
over n as a sum over m := s − n and we get the answer (dropping overall constants)

Z ′ =

s
∑

m=−s

e−βH(m/s). (3)

Eq. (3) looks very promising, but H(m/s) is not the same as 〈m|H |m〉. First let us see where it does work. Take the
simple Hamiltonian H = Sz, then 〈n|H |n〉 = s cos θ, and thus H(x) = sx. This immediately yields

Z ′
H=Sz

=

s
∑

m=−s

e−βm, (4)

and it is easily calculated (in operator language) that Z ′
H=Sz

= ZH=Sz
. The two methods agree for the particular

Hamiltonian H = Sz (the case considered by Cabra et al. [24]). On the other hand, if we take H = S2
z and s = 1, we

can evaluate 〈n|S2
z |n〉 = 1

2

(

cos2 θ + 1
)

; from which we have

H(x) =
1

2

(

x2 + 1
)

. (5)

Thus, Z ′
H=S2

z
= 2e−β + e−β/2, but this conflicts with ZH=S2

z
= 2e−β + 1 by more than just a multiplicative constant.

Thus, we have Z ′
H=S2

z
6= ZH=S2

z
for s = 1, and in fact Z ′

H=S2
z
6= ZH=S2

z
for all s > 1/2.

Importantly, the two methods agree for any Hamiltonian when s = 1/2. This comes from the fact that any
(diagonalized) Hamiltonian for a two state sytem (s = 1/2) can be written as H = a + bSz (in fact H = S2

z = 1/4),
and the above method gives Z ′ = Z when H = a + bSz.

Also, if we take the Hamiltonian H = S2
z/s2, then when s ≫ 1 Eq. (3) reproduces the correct result. This is a

general result for Hamiltonians that are finite polynomials of Sz/s, and suggests that “semiclassically” (i.e. s tends
to infinity), we will still arrive at sensible results.

Agreement can be forced by considering H(x) = x2 instead of Eq. (5), but this corresponds to replacing Sz with
〈Sz〉 in the Hamiltoinian instead of just considering 〈H〉. In the H = S2

z case, it is the difference between considering

〈S2
z 〉 and 〈Sz〉2; the latter gives correct results.
To motivate looking for this same issue in a system with the Weyl-Heisenberg algebra (i.e., the harmonic oscillator

algebra), it is known [25] that one can contract u(2) (since we constructed our coherent states for spins with su(2)) into
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the Weyl-Heisenberg algebra by considering u(2) = span{S0, Sx, Sy, Sz} = u(1) ⊕ su(2), where we define [S0, Si] = 0.
Then define the operators J0 := S0, J1,2(ǫ) := ǫSy,x, and J3(ǫ) := S0 + ǫ−2Sz to get the commutation relations
[J3, J1,2] = ∓iJ2,1, [J1, J2] = −iǫ2J3 + iJ0, and [J0, Ji] = 0. If we let ǫ → 0, we recover exactly the Weyl-Heisenberg
algebra: h4 = span{1, x, p, a†a} with [x, p] = i, [a†a, x] = −ip, [a†a, p] = ix. Observe that Sz is related to a†a in
this contraction, so we might suspect that terms quadratic in a†a give problems like those found with S2

z in the
spin-coherent state path integral.

A Hamiltonian that uses the Weyl-Heisenberg algebra to construct its coherent states is the Bose-Hubbard model.
For a single site, we can write

H = −µn +
U

2
n(n − 1), (6)

where n = a†a and the a (a†) is the annihilation (creation) operator for the algebra [a, a†] = 1. The form n(n − 1) =
a†a†aa comes from the normal ordering required from a path integral of the form

Z ′ =

∫

D2z exp

{

−
∫ β

0

dτ

[

1

2
(z∗ż − ż∗z)

−µ|z|2 +
U

2
|z|4

]}

. (7)

We can solve this path integral with the same method used to obtain Eq. (3) in the spin-coherent state path integral.
Let z =

√
neiθ, so that the measure becomes D2z = DnDθ and the action becomes S =

∫

dτ(inθ̇ − µn + U
2 n2).

Integrating by parts on the nθ̇ term then integrating over Dθ will fix n to be constant, and the boundary term will
fix n to be an integer. Since n is radial, it can only be positive so we directly obtain

Z ′ =

∞
∑

n=0

eµnβ−U
2

n2β . (8)

But this differs from the partition function that we can easily calculate in operator language:

Z =

∞
∑

n=0

eµnβ−U
2

n(n−1)β . (9)

We see that a similar problem to that of the spin coherent state path integral here. To see it explicitly, for U ≫ 1,
we have Z ′ ∼ 1 + eµ−U/2 + · · · , but Z ∼ 1 + eµ + e2µ−U + · · · . With different asymptotics, Z and Z ′ are different
expressions. Note that if we let µ → µ + U

2 in Z ′, that we will get same result. This substitution for µ corresponds

to replacing n in Eq. (6) by 〈n〉 = |z|2 when writing down our action (so instead of 〈n2〉, one gets 〈n〉2).
We now compare this to the semiclassical result. Still considering Eq. (6), let us change our algebra slightly to

incorporate a small parameter (akin to the standard ~ → ∞ for normal semiclassics): h; h−1 is the representation
index (called γ in [20]). We note here that different h’s change the coherent states |z〉 in the following way: if
z = 1√

2
(u + iv), then u = q/c, v = p/d, and h = ~/(cd) (and [a, a†] = h). We have used q and p as the standard

position and momentum for the harmonic oscillator. Up until now we have been considering h = 1.
We can write the propagator between two coherent states |zi〉 and |zf 〉 using a Hubbard-Stratonovich transformar-

tion and the propagator for the harmonic oscillator:

K(z∗f , zi; t) = 〈zf |e−iHT/h|zi〉

=

√

iT

2πUh

∫

dω e
1

h
Φω+ 1

2
iωT+ i

8
UhT , (10)

where we have defined

Φω = z∗fzie
i(ω+µ)T +

iT

2U
ω2 − 1

2
(|zi|2 + |zf |2).

Eq. (10) is an exact statement.
In order to contrast Eq. (10) with semiclassics, we write out the propagator in path integral notation [20]

K(z∗f , zi; T ) =

∫ z∗(T )=z∗f

z(0)=zI

D2z exp {Φ[z, z∗]/h} ,
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where Φ = Γ + S,

Γ =
1

2

[

z∗fz(T ) + z∗(0)zI − |zf |2 − |zI |2
]

,

S =
1

2

∫ T

0

dt (zż∗ − z∗ż) − i

∫ T

0

dt 〈z|H |z〉 .

Performing the standard semiclassical analysis and algebra (see [20] and [19]) the semiclassical propagator takes
the form

Ksc(z
∗
f , zi; T ) =

∑

ω

(

iT

hU

)1/2 (

1

h

∂2Φω

∂ω2

)−1/2

× exp

[

1

h
Φω +

i

2
(ω + µ)T − i∆

]

, (11)

where the sum is over solutions to the consistency equation given by ∂Φω

∂ω = 0 or ω = −Uz∗fzie
i(ω+µ)T , and we have

defined ∆ = 1
2 (µ+2ω)T . The term ∆ comes from the fixing of the fluctuation determinant anomaly described in detail

by Stone et al. [19] for the SU(2) case. However, if we try to get Eq. (11) by using the method of steepest descent on
Eq. (10) with h → 0, we will not get the same result. This is because of what has been shown by others [20, 21]: that
the semiclassics will give results consistent with the Weyl ordering of the Hamiltonian (näıvely ordering all a and a†’s
symmetrically). The usual normal ordered Hamiltonian takes the form (inserting h’s) H = −µn + U

2 n(n − h) while

the Weyl ordered Hamiltonian takes the form (up to a constant) HW = −µn + U
2 n(n + h). If we derive Eq. (10) for

HW , we will find the the steepest descent exactly agrees with Eq. (11) just as expected [20, 21].

While the semiclassical result is not a new one, it shows that the path integral is not dealing with the same
Hamiltonian. Unfortunately, our exact calculation of Z ′ (see Eq. (8)) suggests that the path integral is dealing with
H ′ = −µn + U

2 n2 while semiclassics suggests it is dealing with HW = −µn + U
2 n(n + 1) (going back to h = 1). These

two methods differ but both are not dealing with the Hamiltonian under consideration, Eq. (6). In the case of the
Weyl ordered Hamiltonian, we can write our original Hamiltonian in Eq. (6) as H = HW −Un which is Weyl ordered
(up to a constant). This ordering can be used to modify the path integral by an extra term: −U |z|2. This correction
to the path integral suggested by Weyl ordering does not fix the exact calculation of Z ′ as can be easily shown, but
it does motivate an ad hoc correction to the path integral to “fix” our exact calculation. We use the following action:

S =

∫

dt

(

−µ|z|2 +
U

2
|z|2(|z|2 − 1)

)

. (12)

This action is constructed by just changing the operator n to a function |z|2; while this gives correct results with
the method which gives Eq. (8), there is no a priori reason to suspect this of being the action. Similarly, if in the
spin-coherent state path integral, we replace the operator Sz with its expectation value 〈n|Sz |n〉 everywhere, we will
get the correct result. This means, in particular, for H = S2

z that instead of 〈S2
z 〉 in the spin-path integral we have

〈Sz〉2. In general, if one substitutes the generators of the coherent states in the Hamiltonian with their expectation
value, one obtains the correct result for Z with the methods used to derive Eq. (3) and Eq. (8).

Corrections aside, a simple way to see what has gone wrong is to return to Eq. (5). This H(x) function can not
achieve the value 0, but H = S2

z clearly has such an eigenvalue. This is due to the fact that for higher dimensional
representations of SU(2) not every eigenvector of Sz can be rotated into another with a standard SU(2) rotation.
On the other hand, the coherent states we used are a complete set for even higher dimensional representations, so in
principle, we should not lose any information about the m = 0 state. Continuity in n seems to be the culprit: H(x)
came from a time discretized form (between time slices j and j + 1) 〈nj+1|S2

z |nj〉, and we have 〈n|S2
z | − n〉 = 0, so

〈nj+1|S2
z |nj〉 can attain zero, but not for any paths that are “close” to each other (i.e. nj ≈ nj+1) as the continuous

time path integral assumes. As such, the discrete time path integral (before a continuity assumption is imposed) can
unambiguously give the correct results to a calculation.

To conclude, in the time-continuous formulation of the path integral, neither the action suggested by Weyl-ordering
nor the action constructed by normal ordering gives correct results when evaluating Z via path integrals.
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